0 408

Cited 3 times in

Core Ossification of Bone Morphogenetic Protein-2-Loaded Collagenated Bone Mineral in the Sinus

DC Field Value Language
dc.contributor.author정의원-
dc.contributor.author차재국-
dc.contributor.author송영우-
dc.date.accessioned2021-09-29T01:59:31Z-
dc.date.available2021-09-29T01:59:31Z-
dc.date.issued2021-07-
dc.identifier.issn1937-3341-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/184654-
dc.description.abstractThe objective of this study was to investigate in vitro release kinetics and ossification patterns of bone morphogenetic protein-2-soaked collagenated porcine bone mineral (BMP-2/CPBM) in rabbit sinuses. Release kinetics of BMP-2/CPBM was determined in vitro up to 56 days. In 16 rabbits, BMP-2/CPBM (BMP group) and CPBM alone (control group) were bilaterally grafted in both sinuses. After 4 (N = 8) and 12 (N = 8) weeks, radiographic and histologic analyses were performed. Approximately 40% of BMP-2 was released from CPBM during 3 days in vitro; release maintained at a reduced level until day 56. In vivo, new bone formation in BMP group was dominant at the center and decreased toward the borders of the sinus, while it mainly possessed close to the sinus membrane and basal bone in control group. At the center, significantly more new bone was found in BMP group compared to control group at 4 weeks (29.14% vs. 16.50%; p < 0.05). The total augmented volume of BMP group was significantly greater than control group at 4 (370.13 mm3 vs. 299.32 mm3) and 12 (400.40 mm3 vs. 290.10 mm3) weeks (p < 0.05). In conclusion, BMP-2/CPBM demonstrated a core ossification with a greater augmented volume and new bone formation in the center of the sinus compared to CPBM alone. Impact statement The center of the augmented maxillary sinus tends to show a slower and inferior new bone formation compared to the sites near the sinus membrane and basal bone. In this study, bone morphogenetic protein-2 (BMP-2) loaded onto collagenated porcine bone mineral (CPBM) resulted in a greater augmented volume and new bone formation at the center of the grafted sinus compared to CPBM alone. Therefore, BMP-2-added CPBM in maxillary sinus augmentation may potentially be beneficial to the clinicians, in terms of accelerating the new bone formation at the center area where the apical half of the implant fixture usually places.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherMary Ann Liebert, Inc-
dc.relation.isPartOfTISSUE ENGINEERING PART A-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleCore Ossification of Bone Morphogenetic Protein-2-Loaded Collagenated Bone Mineral in the Sinus-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Periodontics (치주과학교실)-
dc.contributor.googleauthorJae-Kook Cha-
dc.contributor.googleauthorYoung Woo Song-
dc.contributor.googleauthorSungtae Kim-
dc.contributor.googleauthorDaniel S Thoma-
dc.contributor.googleauthorUi-Won Jung-
dc.contributor.googleauthorRonald E Jung-
dc.identifier.doi10.1089/ten.TEA.2020.0151-
dc.contributor.localIdA03692-
dc.contributor.localIdA04004-
dc.relation.journalcodeJ02735-
dc.identifier.eissn1937-335X-
dc.identifier.pmid32940142-
dc.identifier.urlhttps://www.liebertpub.com/doi/10.1089/ten.TEA.2020.0151-
dc.subject.keywordSchneiderian membrane-
dc.subject.keywordanimal study-
dc.subject.keywordbone regeneration-
dc.subject.keywordgrowth factor-
dc.subject.keywordxenograft-
dc.contributor.alternativeNameJung, Ui Won-
dc.contributor.affiliatedAuthor정의원-
dc.contributor.affiliatedAuthor차재국-
dc.citation.volume27-
dc.citation.number13~14-
dc.citation.startPage905-
dc.citation.endPage913-
dc.identifier.bibliographicCitationTISSUE ENGINEERING PART A, Vol.27(13~14) : 905-913, 2021-07-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Periodontics (치주과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.