185 348

Cited 0 times in

Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19

DC Field Value Language
dc.contributor.author동재준-
dc.date.accessioned2021-05-26T16:53:46Z-
dc.date.available2021-05-26T16:53:46Z-
dc.date.issued2021-02-
dc.identifier.issn1319-562X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/182885-
dc.description.abstractAlthough several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish, Arabic-
dc.publisherKing Saud University-
dc.relation.isPartOfSAUDI JOURNAL OF BIOLOGICAL SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleScreening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Family Medicine (가정의학교실)-
dc.contributor.googleauthorTanuj Sharma-
dc.contributor.googleauthorMohammed Abohashrh-
dc.contributor.googleauthorMohammad Hassan Baig-
dc.contributor.googleauthorJae-June Dong-
dc.contributor.googleauthorMohammad Mahtab Alam-
dc.contributor.googleauthorIrfan Ahmad-
dc.contributor.googleauthorSafia Irfan-
dc.identifier.doi10.1016/j.sjbs.2021.02.059-
dc.contributor.localIdA04927-
dc.relation.journalcodeJ04034-
dc.identifier.eissn2213-7106-
dc.identifier.pmid33649700-
dc.subject.keywordCOVID-19-
dc.subject.keywordMain protease-
dc.subject.keywordMutation-
dc.subject.keywordSARS-CoV-2-
dc.subject.keywordVirtual screening-
dc.contributor.alternativeNameDong, Jae June-
dc.contributor.affiliatedAuthor동재준-
dc.citation.volume28-
dc.citation.number5-
dc.citation.startPage3152-
dc.citation.endPage3159-
dc.identifier.bibliographicCitationSAUDI JOURNAL OF BIOLOGICAL SCIENCES, Vol.28(5) : 3152-3159, 2021-02-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Family Medicine (가정의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.