235 347

Cited 5 times in

Modulated Start-Up Mode of Cancer Cell Migration Through Spinophilin-Tubular Networks

DC Field Value Language
dc.contributor.author신동민-
dc.date.accessioned2021-04-29T17:19:00Z-
dc.date.available2021-04-29T17:19:00Z-
dc.date.issued2021-03-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/182280-
dc.description.abstractSpinophilin (SPL) is a multifunctional actin-binding scaffolding protein. Although increased research on SPL in cancer biology has revealed a tumor suppressive role, its modulation in cancer biology, and oncological relevance remains elusive. Thus, we determined the role of SPL in the modulation of the junctional network and cellular migration in A549 lung cancer cell line. Knockdown of SPL promoted cancer cell invasion in agarose spot and scratch wound assays. Attenuation of SPL expression also enhanced invadopodia, as revealed by enhanced vinculin spots, and enhanced sodium bicarbonate cotransporter NBC activity without enhancing membranous expression of NBCn1. Disruption of the tubular structure with nocodazole treatment revealed enhanced SPL expression and reduced NBC activity and A549 migration. SPL-mediated junctional modulation and tubular stability affected bicarbonate transporter activity in A549 cells. The junctional modulatory function of SPL in start-up migration, such as remodeling of tight junctions, enhanced invadopodia, and increased NBC activity, revealed here would support fundamental research and the development of an initial target against lung cancer cell migration.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherFrontiers Media S.A.-
dc.relation.isPartOfFRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleModulated Start-Up Mode of Cancer Cell Migration Through Spinophilin-Tubular Networks-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Oral Biology (구강생물학교실)-
dc.contributor.googleauthorSoyoung Hwang-
dc.contributor.googleauthorPeter Chang-Whan Lee-
dc.contributor.googleauthorDong Min Shin-
dc.contributor.googleauthorJeong Hee Hong-
dc.identifier.doi10.3389/fcell.2021.652791-
dc.contributor.localIdA02091-
dc.relation.journalcodeJ03967-
dc.identifier.eissn2296-634X-
dc.identifier.pmid33768098-
dc.subject.keywordbicarbonate transporter-
dc.subject.keywordmigration-
dc.subject.keywordspinophilin-
dc.subject.keywordtight junction-
dc.subject.keywordtubular network-
dc.contributor.alternativeNameShin, Dong Min-
dc.contributor.affiliatedAuthor신동민-
dc.citation.volume9-
dc.citation.startPage652791-
dc.identifier.bibliographicCitationFRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, Vol.9 : 652791, 2021-03-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Oral Biology (구강생물학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.