0 13

Cited 0 times in

In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery

 Seyedsina Moeinzadeh  ;  Youngbum Park  ;  Sien Lin  ;  Yunzhi Peter Yang 
 MATERIALIA, Vol.15 : 100954, 2021-03 
Journal Title
Issue Date
BMP2 protein ; bone defect ; collagen ; human MSC ; injectable hydrogel ; therapeutic delivery
Here we report development of in-situ stable injectable hydrogels for delivery of cells and growth factors based on two precursors, alginate, and collagen/calcium sulfate (CaSO4). The alg/col hydrogels were shear-thinning, injectable through commercially available needles and stable right after injection. Rheological measurements revealed that pre-crosslinked alg/col hydrogels fully crosslinked at 37°C and that the storage modulus of alg/col hydrogels increased with increasing the collagen content or the concentration of CaSO4. The viscoelastic characteristics and injectability of the alg/col hydrogels were not significantly impacted by the storage of precursor solutions for 28 days. An osteoinductive bone morphogenic protein-2 (BMP-2) loaded into alg/col hydrogels was released in 14 days. Human mesenchymal stem cells (hMSCs) encapsulated in alg/col hydrogels had over 90% viability over 7 days after injection. The DNA content of hMSC-laden alg/col hydrogels increased by 6-37 folds for 28 days, depending on the initial cell density. In addition, hMSCs encapsulated in alg/col hydrogels and incubated in osteogenic medium were osteogenically differentiated and formed a mineralized matrix. Finally, a BMP-2 loaded alg/col hydrogel was used to heal a critical size calvarial bone defect in rats after 8 weeks of injection. The alg/col hydrogel holds great promise in tissue engineering and bioprinting applications.
Full Text
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Prosthodontics (보철과학교실) > 1. Journal Papers
Yonsei Authors
Park, Young Bum(박영범)
사서에게 알리기


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.