16 466

Cited 13 times in

Environmental Enrichment Attenuates Oxidative Stress and Alters Detoxifying Enzymes in an A53T α-Synuclein Transgenic Mouse Model of Parkinson's Disease

DC Field Value Language
dc.contributor.author강성웅-
dc.contributor.author조성래-
dc.date.accessioned2020-12-01T17:01:17Z-
dc.date.available2020-12-01T17:01:17Z-
dc.date.issued2020-09-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/180087-
dc.description.abstractAlthough environmental enrichment (EE) is known to reduce oxidative stress in Parkinson's disease (PD), the metabolic alternations for detoxifying endogenous and xenobiotic compounds according to various brain regions are not fully elucidated yet. This study aimed to further understand the role of EE on detoxifying enzymes, especially those participating in phase I of metabolism, by investigating the levels of enzymes in various brain regions such as the olfactory bulb, brain stem, frontal cortex, and striatum. Eight-month-old transgenic PD mice with the overexpression of human A53T α-synuclein and wild-type mice were randomly allocated to either standard cage condition or EE for 2 months. At 10 months of age, the expression of detoxifying enzymes was evaluated and compared with wild-type of the same age raised in standard cages. EE improved neurobehavioral outcomes such as olfactory and motor function in PD mice. EE-treated mice showed that oxidative stress was attenuated in the olfactory bulb, brain stem, and frontal cortex. EE also reduced apoptosis and induced cell proliferation in the subventricular zone of PD mice. The overexpression of detoxifying enzymes was observed in the olfactory bulb and brain stem of PD mice, which was ameliorated by EE. These findings were not apparent in the other experimental regions. These results suggest the stage of PD pathogenesis may differ according to brain region, and that EE has a protective effect on the PD pathogenesis by decreasing oxidative stress.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.relation.isPartOfANTIOXIDANTS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleEnvironmental Enrichment Attenuates Oxidative Stress and Alters Detoxifying Enzymes in an A53T α-Synuclein Transgenic Mouse Model of Parkinson's Disease-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Rehabilitation Medicine (재활의학교실)-
dc.contributor.googleauthorJung Hwa Seo-
dc.contributor.googleauthorSeong-Woong Kang-
dc.contributor.googleauthorKyungri Kim-
dc.contributor.googleauthorSoohyun Wi-
dc.contributor.googleauthorJang Woo Lee-
dc.contributor.googleauthorSung-Rae Cho-
dc.identifier.doi10.3390/antiox9100928-
dc.contributor.localIdA00041-
dc.contributor.localIdA03831-
dc.relation.journalcodeJ03863-
dc.identifier.eissn2076-3921-
dc.identifier.pmid32998299-
dc.subject.keywordParkinson’s disease-
dc.subject.keyworddetoxifying enzymes-
dc.subject.keywordenvironmental enrichment-
dc.subject.keywordoxidative stress-
dc.contributor.alternativeNameKang, Seong Woong-
dc.contributor.affiliatedAuthor강성웅-
dc.contributor.affiliatedAuthor조성래-
dc.citation.volume9-
dc.citation.number10-
dc.citation.startPage928-
dc.identifier.bibliographicCitationANTIOXIDANTS, Vol.9(10) : 928, 2020-09-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Rehabilitation Medicine (재활의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.