Cited 26 times in

Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning

DC Field Value Language
dc.contributor.author이병권-
dc.contributor.author장혁재-
dc.contributor.author성지민-
dc.date.accessioned2020-09-28T11:12:49Z-
dc.date.available2020-09-28T11:12:49Z-
dc.date.issued2020-05-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/179192-
dc.description.abstractObjectives: To develop, demonstrate and evaluate an automated deep learning method for multiple cardiovascular structure segmentation. Background: Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. Methods: Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. Results: The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 ± 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. Conclusions: An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherPublic Library of Science-
dc.relation.isPartOfPLOS ONE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHComputed Tomography Angiography / methods*-
dc.subject.MESHCoronary Vessels / diagnostic imaging*-
dc.subject.MESHDeep Learning*-
dc.subject.MESHFemale-
dc.subject.MESHHeart / diagnostic imaging*-
dc.subject.MESHHeart Atria / diagnostic imaging-
dc.subject.MESHHeart Ventricles / diagnostic imaging-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.titleAutomatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorLohendran Baskaran-
dc.contributor.googleauthorSubhi J Al'Aref-
dc.contributor.googleauthorGabriel Maliakal-
dc.contributor.googleauthorBenjamin C Lee-
dc.contributor.googleauthorZhuoran Xu-
dc.contributor.googleauthorJeong W Choi-
dc.contributor.googleauthorSang-Eun Lee-
dc.contributor.googleauthorJi Min Sung-
dc.contributor.googleauthorFay Y Lin-
dc.contributor.googleauthorSimon Dunham-
dc.contributor.googleauthorBobak Mosadegh-
dc.contributor.googleauthorYong-Jin Kim-
dc.contributor.googleauthorIlan Gottlieb-
dc.contributor.googleauthorByoung Kwon Lee-
dc.contributor.googleauthorEun Ju Chun-
dc.contributor.googleauthorFilippo Cademartiri-
dc.contributor.googleauthorErica Maffei-
dc.contributor.googleauthorHugo Marques-
dc.contributor.googleauthorSanghoon Shin-
dc.contributor.googleauthorJung Hyun Choi-
dc.contributor.googleauthorKavitha Chinnaiyan-
dc.contributor.googleauthorMartin Hadamitzky-
dc.contributor.googleauthorEdoardo Conte-
dc.contributor.googleauthorDaniele Andreini-
dc.contributor.googleauthorGianluca Pontone-
dc.contributor.googleauthorMatthew J Budoff-
dc.contributor.googleauthorJonathon A Leipsic-
dc.contributor.googleauthorGilbert L Raff-
dc.contributor.googleauthorRenu Virmani-
dc.contributor.googleauthorHabib Samady-
dc.contributor.googleauthorPeter H Stone-
dc.contributor.googleauthorDaniel S Berman-
dc.contributor.googleauthorJagat Narula-
dc.contributor.googleauthorJeroen J Bax-
dc.contributor.googleauthorHyuk-Jae Chang-
dc.contributor.googleauthorJames K Min-
dc.contributor.googleauthorLeslee J Shaw-
dc.identifier.doi10.1371/journal.pone.0232573-
dc.contributor.localIdA02793-
dc.contributor.localIdA03490-
dc.relation.journalcodeJ02540-
dc.identifier.eissn1932-6203-
dc.identifier.pmid32374784-
dc.contributor.alternativeNameLee, Byoung Kwon-
dc.contributor.affiliatedAuthor이병권-
dc.contributor.affiliatedAuthor장혁재-
dc.citation.volume15-
dc.citation.number5-
dc.citation.startPagee0232573-
dc.identifier.bibliographicCitationPLOS ONE, Vol.15(5) : e0232573, 2020-05-
dc.identifier.rimsid67371-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.