0 409

Cited 91 times in

Apoptosis in human hepatoma cell lines by chemotherapeutic drugs via Fas-dependent and Fas-independent pathways

DC Field Value Language
dc.contributor.author김세종-
dc.contributor.author박전한-
dc.date.accessioned2019-11-26T00:59:50Z-
dc.date.available2019-11-26T00:59:50Z-
dc.date.issued1999-
dc.identifier.issn0270-9139-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/172648-
dc.description.abstractMany chemotherapeutic drugs have been found to exert their mode of action via induction of apoptosis in cancer cells. The mechanisms involved in this process are not clear. Recent studies have shown that the Fas/Fas ligand (FasL) system is a key factor controlling apoptotic cell death. In the present study, the involvement of Fas in chemotherapeutic drug-induced apoptosis in hepatoma cell lines was investigated. Five different human hepatoma cell lines, Hep G2, Hep G2.2.15, Hep 3B, SK-Hep-1, and PLC/PRF/5, were used. It was found that they expressed different levels of Fas. However, all five cell lines were susceptible to apoptosis when treated with chemotherapeutic drugs such as 5-fluorouracil (5-FU) or cisplatin. In Hep G2 that constitutively expressed Fas, 5-FU or cisplatin treatment caused an increase in the expression of Fas before the formation of oligonucleosomal DNA fragments, a typical feature of apoptosis. However, in Hep 3B, where Fas is undetectable, apoptosis could also be induced by 5-FU or cisplatin without induction of Fas. The agonistic anti-Fas antibody (CH-11) was capable of inducing apoptosis by itself and promoted drug-induced apoptosis in Hep G2 but not in Hep 3B. The antagonistic anti-Fas antibody (ZB4) inhibited drug-induced apoptosis in Hep G2. Our results suggest that apoptosis can be induced in hepatoma cell lines via both Fas-dependent and Fas-independent pathways.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherWiley-
dc.relation.isPartOfHEPATOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAntibodies-
dc.subject.MESHAntineoplastic Agents/pharmacology*-
dc.subject.MESHApoptosis/drug effects*-
dc.subject.MESHApoptosis/immunology-
dc.subject.MESHCarcinoma, Hepatocellular/pathology*-
dc.subject.MESHCell Division/drug effects-
dc.subject.MESHCisplatin/pharmacology-
dc.subject.MESHFlow Cytometry-
dc.subject.MESHFluorouracil/pharmacology-
dc.subject.MESHHumans-
dc.subject.MESHIn Situ Nick-End Labeling-
dc.subject.MESHLiver Neoplasms/pathology*-
dc.subject.MESHRNA, Messenger/biosynthesis-
dc.subject.MESHReverse Transcriptase Polymerase Chain Reaction-
dc.subject.MESHTumor Cells, Cultured-
dc.subject.MESHfas Receptor/biosynthesis-
dc.subject.MESHfas Receptor/immunology-
dc.subject.MESHfas Receptor/physiology*-
dc.titleApoptosis in human hepatoma cell lines by chemotherapeutic drugs via Fas-dependent and Fas-independent pathways-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Microbiology (미생물학교실)-
dc.contributor.googleauthorShunai Jiang-
dc.contributor.googleauthorMoon Jung Song-
dc.contributor.googleauthorEui‐Cheol Shin-
dc.contributor.googleauthorMi‐Ock Lee-
dc.contributor.googleauthorSe Jong Kim-
dc.contributor.googleauthorJeon Han Park-
dc.identifier.doi10.1002/hep.510290102-
dc.contributor.localIdA00603-
dc.contributor.localIdA01641-
dc.relation.journalcodeJ00985-
dc.identifier.eissn1527-3350-
dc.identifier.pmid9862856-
dc.identifier.urlhttps://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.510290102-
dc.contributor.alternativeNameKim, Se Jong-
dc.contributor.affiliatedAuthor김세종-
dc.contributor.affiliatedAuthor박전한-
dc.citation.volume29-
dc.citation.number1-
dc.citation.startPage101-
dc.citation.endPage110-
dc.identifier.bibliographicCitationHEPATOLOGY, Vol.29(1) : 101-110, 1999-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Microbiology (미생물학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.