0 54

Cited 1 times in

Topographical plots of esophageal distension and contraction: effects of posture on esophageal peristalsis and bolus transport

Authors
 Ali Zifan  ;  Hyun Joo Song  ;  Young-Hoon Youn  ;  Xinhuan Qiu  ;  Melissa Ledgerwood-Lee  ;  Ravinder K. Mittal 
Citation
 NEUROGASTROENTEROLOGY AND MOTILITY, Vol.316(4) : G519-G526, 2019 
Journal Title
 NEUROGASTROENTEROLOGY AND MOTILITY 
ISSN
 1350-1925 
Issue Date
2019
Keywords
distension topograph ; intraluminal impedance ;  posture
Abstract
Each swallow induces a wave of inhibition followed by contraction in the esophagus. Unlike contraction, which can easily be measured in humans using high-resolution manometry (HRM), inhibition is difficult to measure. Luminal distension is a surrogate of the esophagealinhibition. The aim of this study was to determine the effect of posture on the temporal and quantitative relationship between distension and contraction along the entire length of the esophagus in normal healthy subjects by using concurrent HRM, HRM impedance (HRMZ), and intraluminal ultrasound (US). Studies were conducted in 15 normal healthy subjects in the supine and Trendelenburg positions. Both manual and automated methods were used to extract quantitative pressure and impedance-derived features from the HRMZ recordings. Topographical plots of distension and contraction were visualized along the entire length of the esophagus. Distension was also measured from the US images during 10-ml swallows at 5 cm above the lower esophageal sphincter. Each swallow was associated with luminal distension followed by contraction, both of which traversed the esophagus in a sequential/peristaltic fashion. Luminal distension (US) and esophageal contraction amplitude were greater in the Trendelenburg compared with the supine position. Length of esophageal breaks (in the transition zone) were reduced in the Trendelenburg position. Change in posture altered the temporal relationship between distension and contraction, and bolus traveled closer to the esophageal contraction in the Trendelenburg position. Topographical contraction-distension plotsderived from HRMZ recordings is a novel way to visualize esophageal peristalsis. Future studies should investigate if abnormalities of esophageal distension are the cause of functional dysphagia. NEW & NOTEWORTHY Ascending contraction and descending inhibition are two important components of peristalsis. High-resolution manometry only measures the contraction phase of peristalsis. We measured esophageal distension from intraluminal impedance recordings and developed novel contraction-distension topographical plots to prove that similar to contraction, distension also travels in a peristaltic fashion. Change in posture from the supine to the Trendelenburg position also increased the amplitude of esophageal distension and contraction and altered the temporal relationship between distension and contraction.
Full Text
https://www.physiology.org/doi/full/10.1152/ajpgi.00397.2018
DOI
10.1152/ajpgi.00397.2018
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Youn, Young Hoon(윤영훈) ORCID logo https://orcid.org/0000-0002-0071-229X
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/170225
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse