151 289

Cited 5 times in

Design of User-Customized Negative Emotion Classifier Based on Feature Selection Using Physiological Signal Sensors

DC Field Value Language
dc.contributor.author유선국-
dc.date.accessioned2019-02-12T16:51:33Z-
dc.date.available2019-02-12T16:51:33Z-
dc.date.issued2018-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/167187-
dc.description.abstractFirst, the Likert scale and self-assessment manikin are used to provide emotion analogies, but they have limits for reflecting subjective factors. To solve this problem, we use physiological signals that show objective responses from cognitive status. The physiological signals used are electrocardiogram, skin temperature, and electrodermal activity (EDA). Second, the degree of emotion felt, and the related physiological signals, vary according to the individual. KLD calculates the difference in probability distribution shape patterns between two classes. Therefore, it is possible to analyze the relationship between physiological signals and emotion. As the result, features from EDA are important for distinguishing negative emotion in all subjects. In addition, the proposed feature selection algorithm showed an average accuracy of 92.5% and made it possible to improve the accuracy of negative emotion recognition.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfSENSORS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.titleDesign of User-Customized Negative Emotion Classifier Based on Feature Selection Using Physiological Signal Sensors-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Medical Engineering (의학공학교실)-
dc.contributor.googleauthorJeeEun Lee-
dc.contributor.googleauthorSun K. Yoo-
dc.identifier.doi10.3390/s18124253-
dc.contributor.localIdA02471-
dc.relation.journalcodeJ03219-
dc.identifier.eissn1424-8220-
dc.identifier.pmid30513987-
dc.subject.keywordKullback-Leibler divergence-
dc.subject.keywordemotion-
dc.subject.keywordphysiological signal-
dc.contributor.alternativeNameYoo, Sun Kook-
dc.contributor.affiliatedAuthor유선국-
dc.citation.volume18-
dc.citation.number12-
dc.citation.startPageE4253-
dc.identifier.bibliographicCitationSENSORS, Vol.18(12) : E4253, 2018-
dc.identifier.rimsid58163-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.