0 176

Cited 7 times in

Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea

DC FieldValueLanguage
dc.contributor.author김덕원-
dc.contributor.author원종욱-
dc.contributor.author윤진하-
dc.contributor.author이완형-
dc.date.accessioned2018-08-28T16:50:51Z-
dc.date.available2018-08-28T16:50:51Z-
dc.date.issued2018-
dc.identifier.issn0165-0327-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/162002-
dc.description.abstractBACKGROUND: Death by suicide is a preventable public health concern worldwide. The aim of this study is to investigate the probability of suicide death using baseline characteristics and simple medical facility visit history data using Cox regression, support vector machines (SVMs), and deep neural networks (DNNs). METHOD: This study included 819,951 subjects in the National Health Insurance Service (NHIS)-Cohort Sample Database from 2004 to 2013. The dataset was divided randomly into two independent training and validation groups. To improve the performance of predicting suicide death, we applied SVM and DNN to the same training set as the Cox regression model. RESULTS: Among the study population, 2546 people died by intentional self-harm during the follow-up time. Sex, age, type of insurance, household income, disability, and medical records of eight ICD-10 codes (including mental and behavioural disorders) were selected by a Cox regression model with backward stepwise elimination. The area of under the curve (AUC) of Cox regression (0.688), SVM (0.687), and DNN (0.683) were approximately the same. The group with top .5% of predicted probability had hazard ratio of 26.21 compared to that with the lowest 10% of predicted probability. LIMITATIONS: This study is limited by the lack of information on suicidal ideation and attempts, other potential covariates such as information of medication and subcategory ICD-10 codes. Moreover, predictors from the prior 12-24 months of the date of death could be expected to show better performances than predictors from up to 10 years ago. CONCLUSIONS: We suggest a 10-year probability prediction model for suicide death using general characteristics and simple insurance data, which are annually conducted by the Korean government. Suicide death prevention might be enhanced by our prediction model.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherElsevier/North-Holland Biomedical Press-
dc.relation.isPartOfJOURNAL OF AFFECTIVE DISORDERS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.titleTen-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine-
dc.contributor.departmentDept. of Medical Engineering-
dc.contributor.googleauthorSoo Beom Choi-
dc.contributor.googleauthorWanhyung Lee-
dc.contributor.googleauthorJin-Ha Yoon-
dc.contributor.googleauthorJong-Uk Won-
dc.contributor.googleauthorDeok Won Kim-
dc.identifier.doi10.1016/j.jad.2018.01.019-
dc.contributor.localIdA00376-
dc.contributor.localIdA02442-
dc.contributor.localIdA04616-
dc.contributor.localIdA02972-
dc.relation.journalcodeJ01225-
dc.identifier.eissn1573-2517-
dc.identifier.pmid29408160-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0165032717313150-
dc.subject.keywordCox regression-
dc.subject.keywordDeep learning-
dc.subject.keywordSuicide prediction-
dc.subject.keywordSupport vector machine-
dc.contributor.alternativeNameKim, Deok Won-
dc.contributor.alternativeNameWon, Jong Uk-
dc.contributor.alternativeNameYoon, Jin Ha-
dc.contributor.alternativeNameLee, Wan Hyung-
dc.contributor.affiliatedAuthorKim, Deok Won-
dc.contributor.affiliatedAuthorWon, Jong Uk-
dc.contributor.affiliatedAuthorYoon, Jin Ha-
dc.contributor.affiliatedAuthorLee, Wan Hyung-
dc.citation.volume231-
dc.citation.startPage8-
dc.citation.endPage14-
dc.identifier.bibliographicCitationJOURNAL OF AFFECTIVE DISORDERS, Vol.231 : 8-14, 2018-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Preventive Medicine and Public Health (예방의학교실) > 1. Journal Papers
4. Graduate School of Public Health (보건대학원) > Graduate School of Public Health (보건대학원) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.