452 455

Cited 222 times in

Manganese Superoxide Dismutase Deficiency Exacerbates Cerebral Infarction After Focal Cerebral Ischemia/Reperfusion in Mice Implications for the Production and Role of Superoxide Radicals

Authors
 Gyung W. Kim  ;  Takeo Kondo  ;  Nobuo Noshita  ;  Pak H. Chan 
Citation
 STROKE, Vol.33(3) : 809-815, 2002 
Journal Title
STROKE
ISSN
 0039-2499 
Issue Date
2002
MeSH
Animals ; CerebralInfarction/pathology ; CerebralInfarction/physiopathology* ; Cytoprotection ; Disease Models, Animal ; Ethidium/analysis ; Ethidium/metabolism ; Heterozygote ; Homozygote ; Male ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Mitochondria/metabolism ; Oxidative Stress ; Phenanthridines/metabolism ; ReperfusionInjury/physiopathology* ; SuperoxideDismutase/deficiency* ; SuperoxideDismutase/genetics ; SuperoxideDismutase/metabolism ; SuperoxideDismutase-1 ; Superoxides/metabolism* ; Survival Rate
Keywords
cerebral ischemia ; transient ; oxidative stress ; superoxide dismutase ; mice ; transgenic
Abstract
BACKGROUND AND PURPOSE:
Superoxide anion radicals (O2*-) are implicated in ischemia/reperfusion injury, although a direct relationship has not been elucidated. Recently, a specific method of hydroethidine (HEt) oxidation by O2*- was developed to detect O2*- production in a variety of experimental brain injury models. To clarify the role of O2*- in the mechanism of ischemia/reperfusion, we investigated O2*- production after ischemia/reperfusion and ischemia/reperfusion injury in mutant mice deficient in mitochondrial manganese superoxide dismutase (MnSOD) and in wild-type littermates.
METHODS:
Ischemia/reperfusion was performed for 60 minutes using intraluminal suture blockade of the middle cerebral artery in the mutant or wild-type mice. We evaluated fluorescent kinetics of HEt or ethidium, the oxidized form of HEt, in brains after an intravenous injection of HEt, followed by measurement of cellular O2*- production using specific HEt oxidation by O2*- before and after ischemia/reperfusion. Furthermore, we compared O2*- production and subsequent infarct volume in the mice using triphenyltetrazolium chloride after ischemia/reperfusion.
RESULTS:
HEt oxidation to ethidium is primarily a result of mitochondrially produced O2*- under physiological conditions. Cerebral ischemia/reperfusion produced O2*- prominently in neurons shortly after reperfusion, followed by a delayed increase in endothelial cells. A deficiency in MnSOD in mutant mice increased mitochondrial O2*- production and exacerbated cerebral infarction, worsening neurological deficits after ischemia/reperfusion.
CONCLUSION:
These results suggest that mitochondrial O2*- production may be a critical step underlying the mechanism of ischemia/reperfusion injury and that MnSOD may protect against ongoing oxidative cell death after ischemia/reperfusion.
Files in This Item:
T200202281.pdf Download
DOI
10.1161/hs0302.103745
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers
Yonsei Authors
Kim, Gyung Whan(김경환) ORCID logo https://orcid.org/0000-0001-7053-4372
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/143421
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links