8 23

Cited 34 times in

Patterns of wave break during ventricular fibrillation in isolated swine right ventricle

 Moon-Hyoung Lee ; Zhilin Qu ; Peng-Sheng Chen ; Hrayr S. Karagueuzian ; Alan Garfinkel ; James N. Weiss ; Shien-Fong Lin ; Nina C. Wang ; Ali R. Hamzei ; Jong R. Kil ; Olga Voroshilovsky ; Toshihiko Ohara ; Eugene H. Chang ; Scott T. Lamp ; Gregory A. Fishbein 
 American Journal of Physiology - Heart and Circulatory Physiology, Vol.281(1) : 253~265, 2001 
Journal Title
 American Journal of Physiology - Heart and Circulatory Physiology 
Issue Date
Several different patterns of wave break have been described by mapping of the tissue surface during fibrillation. However, it is not clear whether these surface patterns are caused by multiple distinct mechanisms or by a single mechanism. To determine the mechanism by which wave breaks are generated during ventricular fibrillation, we conducted optical mapping studies and single cell transmembrane potential recording in six isolated swine right ventricles (RV). Among 763 episodes of wave break (0.75 times · s−1 · cm−2), optical maps showed three patterns: 80% due to a wave front encountering the refractory wave back of another wave, 11.5% due to wave fronts passing perpendicular to each other, and 8.5% due to a new (target) wave arising just beyond the refractory tail of a previous wave. Computer simulations of scroll waves in three-dimensional tissue showed that these surface patterns could be attributed to two fundamental mechanisms: head-tail interactions and filament break. We conclude that during sustained ventricular fibrillation in swine RV, surface patterns of wave break are produced by two fundamental mechanisms: head-tail interaction between waves and filament break.
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Internal Medicine
Yonsei Authors
사서에게 알리기
Files in This Item:
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.