0 61

Cited 1 times in

Finite element analysis for normal pressure hydrocephalus: The effects of the integration of sulci

Authors
 Hakseung Kim ; Dae-Hyeon Park ; Dong-Joo Kim ; Michael P.F. Sutcliffe ; Marek Czosnyka ; Byung C. Yoon ; Eun-Jin Jeong ; Seong Yi 
Citation
 Medical Image Analysis, Vol.24(1) : 235~244, 2015 
Journal Title
 Medical Image Analysis 
ISSN
 1361-8415 
Issue Date
2015
Abstract
Finite element analysis (FEA) is increasingly used to investigate the brain under various pathological changes. Although FEA has been used to study hydrocephalus for decades, previous studies have primarily focused on ventriculomegaly. The present study aimed to investigate the pathologic changes regarding sulcal deformation in normal pressure hydrocephalus (NPH). Two finite element (FE) models-an anatomical brain geometric (ABG) model and the conventional simplified brain geometric (SBG) model-of NPH were constructed. The models were constructed with identical boundary conditions but with different geometries. The ABG model contained details of the sulci geometry, whereas these details were omitted from the SBG model. The resulting pathologic changes were assessed via four biomechanical parameters: pore pressure, von Mises stress, pressure, and void ratio. NPH was induced by increasing the transmantle pressure gradient (TPG) from 0 to a maximum of 2.0 mmHg. Both models successfully simulated the major features of NPH (i.e., ventriculomegaly and periventricular lucency). The changes in the biomechanical parameters with increasing TPG were similar between the models. However, the SBG model underestimated the degree of stress across the cerebral mantle by 150% compared with the ABG model. The SBG model also overestimates the degree of ventriculomegaly (increases of 194.5% and 154.1% at TPG = 2.0 mmHg for the SBG and ABG models, respectively). Including the sulci geometry in a FEA for NPH clearly affects the overall results. The conventional SBG model is inferior to the ABG model, which accurately simulated sulcal deformation and the consequent effects on cortical or subcortical structures. The inclusion of sulci in future FEA for the brain is strongly advised, especially for models used to investigate space-occupying lesions.
URI
http://ir.ymlib.yonsei.ac.kr/handle/22282913/141750
DOI
10.1016/j.media.2015.05.006
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Neurosurgery
Yonsei Authors
사서에게 알리기
  feedback
Link
 http://www.sciencedirect.com/science/article/pii/S1361841515000730
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse