443 478

Cited 12 times in

Experimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.

DC Field Value Language
dc.contributor.author양재문-
dc.date.accessioned2015-04-24T17:27:31Z-
dc.date.available2015-04-24T17:27:31Z-
dc.date.issued2009-
dc.identifier.issn1661-6596-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/105437-
dc.description.abstractQuantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.-
dc.description.statementOfResponsibilityopen-
dc.format.extent4009~4032-
dc.languageINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.publisherINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHBiomechanical Phenomena-
dc.subject.MESHHydrogen Bonding-
dc.subject.MESHLiquid Crystals/chemistry*-
dc.subject.MESHMicroscopy, Atomic Force-
dc.subject.MESHModels, Chemical*-
dc.subject.MESHMolecular Dynamics Simulation*-
dc.subject.MESHProtein Unfolding-
dc.subject.MESHProteins/chemistry-
dc.subject.MESHThermodynamics-
dc.titleExperimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.-
dc.typeArticle-
dc.contributor.collegeResearcher Institutes (부설 연구소)-
dc.contributor.departmentYonsei Integrative Research Institute for Cerebral & Cardiovascular Disease (뇌심혈관질환융합연구사업단)-
dc.contributor.googleauthorKilho Eom-
dc.contributor.googleauthorJaemoon Yang-
dc.contributor.googleauthorJinsung Park-
dc.contributor.googleauthorGwonchan Yoon-
dc.contributor.googleauthorYoung Soo Sohn-
dc.contributor.googleauthorShinsuk Park-
dc.contributor.googleauthorDae Sung Yoon-
dc.contributor.googleauthorSungsoo Na-
dc.contributor.googleauthorTaeyun Kwon-
dc.identifier.doi10.3390/ijms10094009-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA02315-
dc.relation.journalcodeJ01133-
dc.identifier.eissn1422-0067-
dc.identifier.pmid19865530-
dc.subject.keywordsingle-molecule experiments-
dc.subject.keywordatomic force microscope (AFM)-
dc.subject.keywordcoarse-grained molecular dynamics simulation-
dc.subject.keywordcoarse-grained model-
dc.subject.keywordin vitro molecular recognitions-
dc.contributor.alternativeNameYang, Jae Moon-
dc.contributor.affiliatedAuthorYang, Jae Moon-
dc.citation.volume10-
dc.citation.number9-
dc.citation.startPage4009-
dc.citation.endPage4032-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.10(9) : 4009-4032, 2009-
dc.identifier.rimsid51690-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.