375 488

Cited 112 times in

Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation

DC Field Value Language
dc.contributor.author김영삼-
dc.date.accessioned2014-12-20T17:39:25Z-
dc.date.available2014-12-20T17:39:25Z-
dc.date.issued2011-
dc.identifier.issn1044-1549-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/95014-
dc.description.abstractAutophagy, an autodigestive process that degrades cellular organelles and protein, plays an important role in maintaining cellular homeostasis during environmental stress. Carbon monoxide (CO), a toxic gas and candidate therapeutic molecule, confers cytoprotection in animal models of acute lung injury. The mechanisms underlying CO-dependent lung cell protection and the role of autophagy in this process remain unclear. Here, we demonstrate that CO exposure time-dependently increased the expression and activation of the autophagic protein, microtubule-associated protein-1 light chain-3B (LC3B) in mouse lung, and in cultured human alveolar (A549) or human bronchial epithelial cells. Furthermore, CO increased autophagosome formation in epithelial cells by electron microscopy and green fluorescent protein (GFP)-LC3 puncta assays. Recent studies indicate that reactive oxygen species (ROS) play an important role in the activation of autophagy. CO up-regulated mitochondria-dependent generation of ROS in epithelial cells, as assayed by MitoSOX fluorescence. Furthermore, CO-dependent induction of LC3B expression was inhibited by N-acetyl-L-cysteine and the mitochondria-targeting antioxidant, Mito-TEMPO. These data suggest that CO promotes the autophagic process through mitochondrial ROS generation. We investigated the relationships between autophagic proteins and CO-dependent cytoprotection using a model of hyperoxic stress. CO protected against hyperoxia-induced cell death, and inhibited hyperoxia-associated ROS production. The ability of CO to protect against hyperoxia-induced cell death and caspase-3 activation was compromised in epithelial cells infected with LC3B-small interfering (si)RNA, indicating a role for autophagic proteins. These studies uncover a new mechanism for the protective action of CO, in support of potential therapeutic application of this gas.-
dc.description.statementOfResponsibilityopen-
dc.format.extent867~873-
dc.relation.isPartOfAMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAdministration, Inhalation-
dc.subject.MESHAnimals-
dc.subject.MESHAntioxidants/pharmacology-
dc.subject.MESHAutophagy/drug effects*-
dc.subject.MESHCarbon Monoxide/administration & dosage-
dc.subject.MESHCarbon Monoxide/pharmacology*-
dc.subject.MESHCell Line, Tumor-
dc.subject.MESHCytoprotection-
dc.subject.MESHDisease Models, Animal-
dc.subject.MESHEpithelial Cells/drug effects*-
dc.subject.MESHEpithelial Cells/metabolism-
dc.subject.MESHEpithelial Cells/pathology-
dc.subject.MESHGases-
dc.subject.MESHHumans-
dc.subject.MESHHyperoxia/metabolism-
dc.subject.MESHHyperoxia/pathology-
dc.subject.MESHHyperoxia/prevention & control*-
dc.subject.MESHMice-
dc.subject.MESHMice, Inbred C57BL-
dc.subject.MESHMicroscopy, Fluorescence-
dc.subject.MESHMicrotubule-Associated Proteins/genetics-
dc.subject.MESHMicrotubule-Associated Proteins/metabolism-
dc.subject.MESHMitochondria/drug effects*-
dc.subject.MESHMitochondria/metabolism-
dc.subject.MESHMitochondria/pathology-
dc.subject.MESHOxidative Stress/drug effects*-
dc.subject.MESHRNA Interference-
dc.subject.MESHReactive Oxygen Species/metabolism*-
dc.subject.MESHRespiratory Mucosa/drug effects*-
dc.subject.MESHRespiratory Mucosa/metabolism-
dc.subject.MESHRespiratory Mucosa/pathology-
dc.subject.MESHSignal Transduction/drug effects-
dc.subject.MESHTime Factors-
dc.subject.MESHTransfection-
dc.titleCarbon monoxide activates autophagy via mitochondrial reactive oxygen species formation-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학)-
dc.contributor.googleauthorSeon-Jin Lee-
dc.contributor.googleauthorStefan W. Ryter-
dc.contributor.googleauthorJin-Fu Xu-
dc.contributor.googleauthorKiichi Nakahira-
dc.contributor.googleauthorHong Pyo Kim-
dc.contributor.googleauthorAugustine M. K. Choi-
dc.contributor.googleauthorYoung Sam Kim-
dc.identifier.doi10.1165/rcmb.2010-0352OC-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA00707-
dc.relation.journalcodeJ00113-
dc.identifier.eissn1535-4989-
dc.identifier.pmid21441382-
dc.subject.keywordapoptosis-
dc.subject.keywordautophagy-
dc.subject.keywordcarbon monoxide-
dc.subject.keywordepithelial cells-
dc.subject.keywordhyperoxia-
dc.contributor.alternativeNameKim, Young Sam-
dc.contributor.affiliatedAuthorKim, Young Sam-
dc.rights.accessRightsfree-
dc.citation.volume45-
dc.citation.number4-
dc.citation.startPage867-
dc.citation.endPage873-
dc.identifier.bibliographicCitationAMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, Vol.45(4) : 867-873, 2011-
dc.identifier.rimsid26980-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.