191 494

Cited 12 times in

Duration and magnitude of extracellular signal-regulated protein kinase phosphorylation determine adipogenesis or osteogenesis in human bone marrow-derived stem cells.

DC Field Value Language
dc.contributor.author이진우-
dc.contributor.author정호선-
dc.date.accessioned2014-12-20T16:39:54Z-
dc.date.available2014-12-20T16:39:54Z-
dc.date.issued2011-
dc.identifier.issn0513-5796-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/93143-
dc.description.abstractPURPOSE: Imbalances between osteogenic and adipogenic differentiation leads to diseases such as osteoporosis. The aim of our study was to demonstrate the differences in extracellular signal-regulated kinase (ERK) phosphorylation during both adipogenesis and osteogenesis of human bone marrow-derived stem cells (BMSCs). MATERIALS AND METHODS: Using troglitazone, GW9662 and U0126, we investigated their role in hBMSC differentiation to adipogenic and osteogenic fates. RESULTS: ERK1/2 inhibition by U0126 suppressed proliferator-activated receptor (PPAR)γ expression and lipid accumulation, while it decreased the mRNA expression of adipogenic genes (lipoprotein lipase, PPARγ, and adipocyte protein) and osteogenic genes (type I collagen and osteopontin). ERK phosphorylation was transient and decreased during adipogenesis, whereas it occurred steadily during osteogenesis. Troglitazone, a PPARγ agonist, induced adipogenesis by inhibiting ERK phosphorylation even in an osteogenic medium, suggesting that ERK signaling needs to be shut off in order to proceed with adipose cell commitment. Cell proliferation was greatly increased in osteogenesis but was not changed during adipogenesis, indicating that ERK might play different roles in cellular proliferation and differentiation between the two committed cell types. CONCLUSION: The duration and magnitude of ERK activation might be a crucial factor for the balance between adipogenesis and osteogenesis in human bone marrow-derived stem cells.-
dc.description.statementOfResponsibilityopen-
dc.format.extent165~172-
dc.relation.isPartOfYONSEI MEDICAL JOURNAL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAdipogenesis/drug effects*-
dc.subject.MESHAdipogenesis/genetics-
dc.subject.MESHAdult-
dc.subject.MESHAnilides/pharmacology-
dc.subject.MESHBone Marrow Cells/cytology*-
dc.subject.MESHBone Marrow Cells/drug effects-
dc.subject.MESHBone Marrow Cells/metabolism-
dc.subject.MESHButadienes/pharmacology-
dc.subject.MESHCell Differentiation/drug effects-
dc.subject.MESHCells, Cultured-
dc.subject.MESHChromans/pharmacology-
dc.subject.MESHExtracellular Signal-Regulated MAP Kinases/metabolism*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNitriles/pharmacology-
dc.subject.MESHOsteogenesis/drug effects*-
dc.subject.MESHOsteogenesis/genetics-
dc.subject.MESHPPAR gamma/agonists-
dc.subject.MESHPPAR gamma/antagonists & inhibitors-
dc.subject.MESHPhosphorylation/drug effects-
dc.subject.MESHReverse Transcriptase Polymerase Chain Reaction-
dc.subject.MESHStem Cells/cytology*-
dc.subject.MESHStem Cells/drug effects-
dc.subject.MESHStem Cells/metabolism*-
dc.subject.MESHThiazolidinediones/pharmacology-
dc.titleDuration and magnitude of extracellular signal-regulated protein kinase phosphorylation determine adipogenesis or osteogenesis in human bone marrow-derived stem cells.-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Orthopedic Surgery (정형외과학)-
dc.contributor.googleauthorHo Sun Jung-
dc.contributor.googleauthorYun Hee Kim-
dc.contributor.googleauthorJin Woo Lee-
dc.identifier.doi10.3349/ymj.2011.52.1.165-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA03230-
dc.contributor.localIdA03785-
dc.relation.journalcodeJ02813-
dc.identifier.eissn1976-2437-
dc.identifier.pmid21155050-
dc.subject.keywordAdipogenesis-
dc.subject.keywordosteogenesis-
dc.subject.keywordERK-
dc.subject.keywordPPARγ-
dc.subject.keywordhuman bone marrow-derived stem cells-
dc.contributor.alternativeNameLee, Jin Woo-
dc.contributor.alternativeNameJung, Ho Sun-
dc.contributor.affiliatedAuthorLee, Jin Woo-
dc.contributor.affiliatedAuthorJung, Ho Sun-
dc.rights.accessRightsfree-
dc.citation.volume52-
dc.citation.number1-
dc.citation.startPage165-
dc.citation.endPage172-
dc.identifier.bibliographicCitationYONSEI MEDICAL JOURNAL, Vol.52(1) : 165-172, 2011-
dc.identifier.rimsid28060-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Orthopedic Surgery (정형외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.