487 932

Cited 0 times in

Epithelial Na+ channel proteins are mechanotransducers of myogenic constriction in rat posterior cerebral arteries.

DC Field Value Language
dc.contributor.author안덕선-
dc.contributor.author연수인-
dc.contributor.author이영호-
dc.contributor.author임미화-
dc.contributor.author김억천-
dc.date.accessioned2014-12-19T16:50:04Z-
dc.date.available2014-12-19T16:50:04Z-
dc.date.issued2012-
dc.identifier.issn0958-0670-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/90282-
dc.description.abstractIt has been suggested that mechanosensitive ion channels initiate myogenic responses in vessels; however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although previous reports have suggested that epithelial Na(+) channel (ENaC) proteins are mechanotransducers in arteries, experimental evidence demonstrating that ENaC proteins are mechanotransducers are not fully elucidated. The goal of the present study was to determine whether the ENaC is a mechanotransducer for the myogenic response by providing supporting evidence in the rat posterior cerebral artery (PCA). We measured the effect of ENaC inhibition on the pressure-induced myogenic response, Ca(2+) concentration and 20 kDa myosin light chain (MLC(20)) phosphorylation. We detected expression of βENaC and γENaC subunits in rat PCA by Western blots and immunofluorescence. Inhibition of ENaCs with amiloride, ethyl isopropyl amiloride or benzamil blocked the myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with βENaC and γENaC small interfering RNA. The myogenic response was inhibited by elimination of external Na(+), which was replaced with N-methyl-d-glucamine. Amiloride and nifedipine inhibited the pressure-induced increase in Ca(2+) concentration. Finally, MLC(20) increased when the intraluminal pressure was raised, and the pressure-induced increase in MLC(20) phosphorylation was inhibited by pretreatment with amiloride, and in arteries transfected with βENaC or γENaC small interfering RNA. Our results suggest that ENaCs may play an important role as mechanosensitive ion channels initiating pressure-induced myogenic responses in rat PCA.-
dc.description.statementOfResponsibilityopen-
dc.relation.isPartOfEXPERIMENTAL PHYSIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAnimals-
dc.subject.MESHEpithelial Sodium Channels/physiology*-
dc.subject.MESHMale-
dc.subject.MESHMechanotransduction, Cellular/physiology*-
dc.subject.MESHMuscle, Smooth, Vascular/physiology*-
dc.subject.MESHPosterior Cerebral Artery/physiology*-
dc.subject.MESHRNA, Small Interfering/genetics-
dc.subject.MESHRats-
dc.subject.MESHRats, Sprague-Dawley-
dc.subject.MESHVasoconstriction/physiology*-
dc.titleEpithelial Na+ channel proteins are mechanotransducers of myogenic constriction in rat posterior cerebral arteries.-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Physiology (생리학)-
dc.contributor.googleauthorEok-Cheon Kim-
dc.contributor.googleauthorDuck-Sun Ahn-
dc.contributor.googleauthorSoo-In Yeon-
dc.contributor.googleauthorMihwa Lim-
dc.contributor.googleauthorYoung-Ho Lee-
dc.identifier.doi22090066-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA02223-
dc.contributor.localIdA02350-
dc.contributor.localIdA02968-
dc.contributor.localIdA03362-
dc.contributor.localIdA00687-
dc.relation.journalcodeJ00876-
dc.identifier.eissn1469-445X-
dc.identifier.pmid22090066-
dc.subject.keywordAnimals-
dc.subject.keywordEpithelial Sodium Channels/physiology*-
dc.subject.keywordMale-
dc.subject.keywordMechanotransduction, Cellular/physiology*-
dc.subject.keywordMuscle, Smooth, Vascular/physiology*-
dc.subject.keywordPosterior Cerebral Artery/physiology*-
dc.subject.keywordRNA, Small Interfering/genetics-
dc.subject.keywordRats-
dc.subject.keywordRats, Sprague-Dawley-
dc.subject.keywordVasoconstriction/physiology*-
dc.contributor.alternativeNameAhn, Duk Sun-
dc.contributor.alternativeNameYeon, Soo In-
dc.contributor.alternativeNameLee, Young Ho-
dc.contributor.alternativeNameLim, Mi Hwa-
dc.contributor.alternativeNameKim, Eok Cheon-
dc.contributor.affiliatedAuthorAhn, Duk Sun-
dc.contributor.affiliatedAuthorYeon, Soo In-
dc.contributor.affiliatedAuthorLee, Young Ho-
dc.contributor.affiliatedAuthorLim, Mi Hwa-
dc.contributor.affiliatedAuthorKim, Eok Cheon-
dc.citation.volume97-
dc.citation.number4-
dc.citation.startPage544-
dc.citation.endPage555-
dc.identifier.bibliographicCitationEXPERIMENTAL PHYSIOLOGY, Vol.97(4) : 544-555, 2012-
dc.identifier.rimsid34114-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Physiology (생리학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.