1 483

Cited 0 times in

Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.

DC Field Value Language
dc.contributor.author신동아-
dc.date.accessioned2014-12-19T16:32:10Z-
dc.date.available2014-12-19T16:32:10Z-
dc.date.issued2012-
dc.identifier.issn0264-6021-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/89714-
dc.description.abstractHD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnormal expansion of CAG repeats in the HTT (huntingtin) gene. We have recently established two iPSC (induced pluripotent stem cell) lines derived from a HD patient carrying 72 CAG repeats (HD-iPSC). In order to understand the proteomic profiles of HD-iPSCs, we have performed comparative proteomic analysis among normal hESCs (human embryonic stem cells; H9), iPSCs (551-8) and HD-iPSCs at undifferentiated stages, and identified 26 up- and down-regulated proteins. Interestingly, these differentially expressed proteins are known to be involved in different biological processes, such as oxidative stress, programmed cell death and cellular oxygen-associated proteins. Among them, we found that oxidative stress-related proteins, such as SOD1 (superoxide dismutase 1) and Prx (peroxiredoxin) families are particularly affected in HD-iPSCs, implying that HD-iPSCs are highly susceptible to oxidative stress. We also found that BTF3 (basic transcription factor 3) is up-regulated in HD-iPSCs, which leads to the induction of ATM (ataxia telangiectasia mutated), followed by activation of the p53-mediated apoptotic pathway. In addition, we observed that the expression of cytoskeleton-associated proteins was significantly reduced in HD-iPSCs, implying that neuronal differentiation was also affected. Taken together, these results demonstrate that HD-iPSCs can provide a unique cellular disease model system to understand the pathogenesis and neurodegeneration mechanisms in HD, and the identified proteins from the present study may serve as potential targets for developing future HD therapeutics.-
dc.description.statementOfResponsibilityopen-
dc.relation.isPartOfBIOCHEMICAL JOURNAL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHCell Differentiation-
dc.subject.MESHCell Line-
dc.subject.MESHEmbryonic Stem Cells/cytology-
dc.subject.MESHEmbryonic Stem Cells/metabolism-
dc.subject.MESHEmbryonic Stem Cells/pathology-
dc.subject.MESHHumans-
dc.subject.MESHHuntingtin Protein-
dc.subject.MESHHuntington Disease/genetics-
dc.subject.MESHHuntington Disease/metabolism*-
dc.subject.MESHHuntington Disease/pathology-
dc.subject.MESHInduced Pluripotent Stem Cells/cytology*-
dc.subject.MESHInduced Pluripotent Stem Cells/metabolism-
dc.subject.MESHNerve Tissue Proteins/genetics-
dc.subject.MESHNerve Tissue Proteins/metabolism-
dc.subject.MESHNeurons/cytology-
dc.subject.MESHNeurons/metabolism-
dc.subject.MESHOxidative Stress-
dc.subject.MESHProteomics-
dc.subject.MESHTrinucleotide Repeat Expansion-
dc.titleQuantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Neurosurgery (신경외과학)-
dc.contributor.googleauthorJung‑Il Chae-
dc.contributor.googleauthorDong‑Wook Kim-
dc.contributor.googleauthorNayeon Lee-
dc.contributor.googleauthorYoung‑Joo Jeon-
dc.contributor.googleauthorIksoo Jeon-
dc.contributor.googleauthorJihye Kwon-
dc.contributor.googleauthorJumi Kim-
dc.contributor.googleauthorYunjo Soh-
dc.contributor.googleauthorDong‑Seok Lee-
dc.contributor.googleauthorKang Seok Seo-
dc.contributor.googleauthorNag‑Jin Choi-
dc.contributor.googleauthorByoung Chul Park-
dc.contributor.googleauthorSung Hyun Kang-
dc.contributor.googleauthorJoohyun Ryu-
dc.contributor.googleauthorSeung‑Hun Oh-
dc.contributor.googleauthorDong Ah Shin-
dc.contributor.googleauthorDong Ryul Lee-
dc.contributor.googleauthorJeong Tae Do-
dc.contributor.googleauthorIn‑Hyun Park-
dc.contributor.googleauthorGeorge Q. Daley-
dc.contributor.googleauthorJihwan Song-
dc.identifier.doi22694310-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA02092-
dc.relation.journalcodeJ00282-
dc.identifier.eissn1470-8728-
dc.identifier.pmid22694310-
dc.identifier.urlhttp://www.biochemj.org/bj/446/0359/bj4460359.htm-
dc.subject.keywordapoptosis-
dc.subject.keywordcytoskeleton-associated proteins-
dc.subject.keywordHuntington's disease-
dc.subject.keywordinduced pluripotent stem cell (iPSC)-
dc.subject.keywordoxidative stress-
dc.subject.keywordproteomic analysis-
dc.contributor.alternativeNameShin, Dong A-
dc.contributor.affiliatedAuthorShin, Dong A-
dc.citation.volume446-
dc.citation.number3-
dc.citation.startPage359-
dc.citation.endPage371-
dc.identifier.bibliographicCitationBIOCHEMICAL JOURNAL, Vol.446(3) : 359-371, 2012-
dc.identifier.rimsid31863-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.