6 722

Cited 0 times in

Cited 44 times in

A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment

DC Field Value Language
dc.contributor.author박국인-
dc.date.accessioned2014-12-18T08:52:02Z-
dc.date.available2014-12-18T08:52:02Z-
dc.date.issued2013-
dc.identifier.issn0142-9612-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/87097-
dc.description.abstractWe report a microfluidic array for investigating and quantitatively analyzing human neural stem cell (hNSC) self-renewal and differentiation in an in vivo-like microenvironment. NSC niche conditions, including three-dimensional (3D) extracellular matrices and low oxygen tension, were effectively reconstituted in the microfluidic array in a combinatorial manner. The array device was fabricated to be detachable, rendering it compatible with quantitative real-time polymerase chain reaction for quantifying the effects of the biomimetic conditions on hNSC self-renewal and differentiation. We show that throughput of 3D cell culture and quantitative analysis can be increased. We also show that 3D hypoxic microenvironments maintain hNSC self-renewal capacity and direct neuronal commitment during hNSC differentiation.-
dc.description.statementOfResponsibilityopen-
dc.relation.isPartOfBIOMATERIALS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHCell Culture Techniques-
dc.subject.MESHCell Differentiation/physiology-
dc.subject.MESHCell Hypoxia/physiology-
dc.subject.MESHCells, Cultured-
dc.subject.MESHHumans-
dc.subject.MESHMicrofluidics/methods*-
dc.subject.MESHModels, Biological-
dc.subject.MESHNeural Stem Cells/cytology*-
dc.titleA microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pediatrics (소아과학)-
dc.contributor.googleauthorKisuk Yang-
dc.contributor.googleauthorSewoon Han-
dc.contributor.googleauthorYoojin Shin-
dc.contributor.googleauthorEunkyung Ko-
dc.contributor.googleauthorJin Kim-
dc.contributor.googleauthorKook In Park-
dc.contributor.googleauthorSeok Chung-
dc.contributor.googleauthorSeung-Woo Cho-
dc.identifier.doi10.1016/j.biomaterials.2013.05.067-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA01438-
dc.relation.journalcodeJ00312-
dc.identifier.eissn1878-5905-
dc.identifier.pmid23777909-
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S0142961213006595-
dc.subject.keywordMicrofluidic array-
dc.subject.keywordNeural stem cells-
dc.subject.keywordHypoxia-
dc.subject.keywordSelf-renewal-
dc.subject.keywordDifferentiation-
dc.contributor.alternativeNamePark, Kook In-
dc.contributor.affiliatedAuthorPark, Kook In-
dc.rights.accessRightsnot free-
dc.citation.volume34-
dc.citation.number28-
dc.citation.startPage6607-
dc.citation.endPage6614-
dc.identifier.bibliographicCitationBIOMATERIALS, Vol.34(28) : 6607-6614, 2013-
dc.identifier.rimsid32153-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pediatrics (소아과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.