0 4

Cited 0 times in

Cited 0 times in

PRGNN: Pyramidal Region Graph Neural Network for Region-Based Brain PET Classification

DC Field Value Language
dc.contributor.authorKim, Daesung-
dc.contributor.authorSeo, Seungbeom-
dc.contributor.authorKim, Boosung-
dc.contributor.authorChool, Kyobin-
dc.contributor.authorJun, Youngjun-
dc.contributor.authorYun, Mijin-
dc.date.accessioned2026-02-05T06:40:07Z-
dc.date.available2026-02-05T06:40:07Z-
dc.date.created2026-01-28-
dc.date.issued2026-01-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210949-
dc.description.abstractBrain positron emission tomography (PET) has been widely used for the diagnosis of various neurodegenerative diseases. To assist physicians, convolutional neural networks (CNNs) and transformers have been explored for prediction of diseases based on brain PET images. While these models show promising performance, they are designed to process the entire image, which facilitates shortcut learning by extracting irrelevant features. To alleviate shortcut learning, we observe that brain images share the same structure, and regions of interest (ROIs) can be defined for relevant regions. In this regard, we propose Pyramidal Region Graph Neural Network (PRGNN), which employs a 3D convolutional backbone to learn multi-level feature representations and constructs nodes that correspond to anatomical ROIs. Using ROI-based node embeddings, PRGNN extracts metabolic patterns in functionally relevant regions and performs explicit inter-regional reasoning. We evaluate PRGNN on classifying 18F-fluorodeoxyglucose (FDG) and amyloid PET, outperforming models based on CNN, transformer, and GNN. Moreover, interpretability analyses highlight disease-relevant regions that align with clinical observations, demonstrating PRGNN's potential for improving diagnostic performance and reliability. Code is available at https://github.com/Treeboy2762/PRGNN.-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfMEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2025, PT XII-
dc.relation.isPartOfLecture Notes in Computer Science-
dc.titlePRGNN: Pyramidal Region Graph Neural Network for Region-Based Brain PET Classification-
dc.typeArticle-
dc.contributor.googleauthorKim, Daesung-
dc.contributor.googleauthorSeo, Seungbeom-
dc.contributor.googleauthorKim, Boosung-
dc.contributor.googleauthorChool, Kyobin-
dc.contributor.googleauthorJun, Youngjun-
dc.contributor.googleauthorYun, Mijin-
dc.identifier.doi10.1007/978-3-032-05162-2_53-
dc.relation.journalcodeJ02160-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-032-05162-2_53-
dc.subject.keywordClassification-
dc.subject.keywordGraph Neural Network-
dc.subject.keywordPositron Emission Tomography-
dc.subject.keywordExplainable AI-
dc.contributor.affiliatedAuthorSeo, Seungbeom-
dc.contributor.affiliatedAuthorYun, Mijin-
dc.identifier.scopusid2-s2.0-105017965167-
dc.identifier.wosid001596392200053-
dc.citation.volume15971-
dc.citation.startPage554-
dc.citation.endPage563-
dc.identifier.bibliographicCitationMEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2025, PT XII, Vol.15971 : 554-563, 2026-01-
dc.identifier.rimsid91342-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorClassification-
dc.subject.keywordAuthorGraph Neural Network-
dc.subject.keywordAuthorPositron Emission Tomography-
dc.subject.keywordAuthorExplainable AI-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusF-18-FDG PET-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusDEMENTIA-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Nuclear Medicine (핵의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.