Cited 0 times in 
Cited 0 times in 
PSGM-TR: A Transformer-Based Approach for Pulmonary Segment Segmentation Using Gaussian Mixture Models
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Koh, Seunghee | - |
| dc.contributor.author | Lee, Chanho | - |
| dc.contributor.author | Choi, Jaehyun | - |
| dc.contributor.author | Kim, Minseo | - |
| dc.contributor.author | Yoon, Youngno | - |
| dc.contributor.author | Lee, Changyoung | - |
| dc.contributor.author | Kim, Junmo | - |
| dc.date.accessioned | 2026-02-04T00:33:03Z | - |
| dc.date.available | 2026-02-04T00:33:03Z | - |
| dc.date.created | 2026-01-30 | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.issn | 0302-9743 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/210462 | - |
| dc.description.abstract | Identifying pulmonary segments is essential for planning segmentectomy, a lung-conserving surgical procedure, but remains challenging since intersegmental boundaries are not directly visible in CT images and must be inferred from surrounding anatomical structures. To address this, we propose PSGM-TR, a transformer-based approach for pulmonary segment segmentation using Gaussian Mixture Models (GMMs). PSGM-TR regresses GMM parameters to construct GMM-parameterized spatial distributions, from which each location is assigned to the most probable segment. The GMM primitives that define each segment class are regressed from class-wise primitive queries, which are guided by features from 3D CT images and decoded through a GMM-parameterizing decoder. These queries implicitly learn semantically meaningful spatial roles and produce anatomically aligned primitives without relying on handcrafted anatomical priors. PSGM-TR achieves competitive performance and generates balanced, non-redundant, and anatomically coherent segmentations. Our analysis shows that PSGM-TR effectively captures anatomical structure through GMM-based spatial modeling, offering a clinically reliable and interpretable solution for segmentectomy planning and anatomy-aware image analysis. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026. | - |
| dc.language | English | - |
| dc.publisher | Springer | - |
| dc.relation.isPartOf | Lecture Notes in Computer Science | - |
| dc.relation.isPartOf | Lecture Notes in Computer Science | - |
| dc.title | PSGM-TR: A Transformer-Based Approach for Pulmonary Segment Segmentation Using Gaussian Mixture Models | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Koh, Seunghee | - |
| dc.contributor.googleauthor | Lee, Chanho | - |
| dc.contributor.googleauthor | Choi, Jaehyun | - |
| dc.contributor.googleauthor | Kim, Minseo | - |
| dc.contributor.googleauthor | Yoon, Youngno | - |
| dc.contributor.googleauthor | Lee, Changyoung | - |
| dc.contributor.googleauthor | Kim, Junmo | - |
| dc.identifier.doi | 10.1007/978-3-032-06774-6_2 | - |
| dc.relation.journalcode | J02160 | - |
| dc.identifier.url | https://link.springer.com/chapter/10.1007/978-3-032-06774-6_2 | - |
| dc.subject.keyword | Gaussian mixture model | - |
| dc.subject.keyword | Pulmonary segment segmentation | - |
| dc.subject.keyword | Transformer | - |
| dc.contributor.affiliatedAuthor | Lee, Changyoung | - |
| dc.identifier.scopusid | 2-s2.0-105020025197 | - |
| dc.citation.volume | 16171 LNCS | - |
| dc.citation.startPage | 14 | - |
| dc.citation.endPage | 28 | - |
| dc.identifier.bibliographicCitation | Lecture Notes in Computer Science, Vol.16171 LNCS : 14-28, 2026-01 | - |
| dc.identifier.rimsid | 91442 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Gaussian mixture model | - |
| dc.subject.keywordAuthor | Pulmonary segment segmentation | - |
| dc.subject.keywordAuthor | Transformer | - |
| dc.type.docType | Conference paper | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.