0 3

Cited 0 times in

Cited 0 times in

PSGM-TR: A Transformer-Based Approach for Pulmonary Segment Segmentation Using Gaussian Mixture Models

DC Field Value Language
dc.contributor.authorKoh, Seunghee-
dc.contributor.authorLee, Chanho-
dc.contributor.authorChoi, Jaehyun-
dc.contributor.authorKim, Minseo-
dc.contributor.authorYoon, Youngno-
dc.contributor.authorLee, Changyoung-
dc.contributor.authorKim, Junmo-
dc.date.accessioned2026-02-04T00:33:03Z-
dc.date.available2026-02-04T00:33:03Z-
dc.date.created2026-01-30-
dc.date.issued2026-01-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210462-
dc.description.abstractIdentifying pulmonary segments is essential for planning segmentectomy, a lung-conserving surgical procedure, but remains challenging since intersegmental boundaries are not directly visible in CT images and must be inferred from surrounding anatomical structures. To address this, we propose PSGM-TR, a transformer-based approach for pulmonary segment segmentation using Gaussian Mixture Models (GMMs). PSGM-TR regresses GMM parameters to construct GMM-parameterized spatial distributions, from which each location is assigned to the most probable segment. The GMM primitives that define each segment class are regressed from class-wise primitive queries, which are guided by features from 3D CT images and decoded through a GMM-parameterizing decoder. These queries implicitly learn semantically meaningful spatial roles and produce anatomically aligned primitives without relying on handcrafted anatomical priors. PSGM-TR achieves competitive performance and generates balanced, non-redundant, and anatomically coherent segmentations. Our analysis shows that PSGM-TR effectively captures anatomical structure through GMM-based spatial modeling, offering a clinically reliable and interpretable solution for segmentectomy planning and anatomy-aware image analysis. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfLecture Notes in Computer Science-
dc.relation.isPartOfLecture Notes in Computer Science-
dc.titlePSGM-TR: A Transformer-Based Approach for Pulmonary Segment Segmentation Using Gaussian Mixture Models-
dc.typeArticle-
dc.contributor.googleauthorKoh, Seunghee-
dc.contributor.googleauthorLee, Chanho-
dc.contributor.googleauthorChoi, Jaehyun-
dc.contributor.googleauthorKim, Minseo-
dc.contributor.googleauthorYoon, Youngno-
dc.contributor.googleauthorLee, Changyoung-
dc.contributor.googleauthorKim, Junmo-
dc.identifier.doi10.1007/978-3-032-06774-6_2-
dc.relation.journalcodeJ02160-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-032-06774-6_2-
dc.subject.keywordGaussian mixture model-
dc.subject.keywordPulmonary segment segmentation-
dc.subject.keywordTransformer-
dc.contributor.affiliatedAuthorLee, Changyoung-
dc.identifier.scopusid2-s2.0-105020025197-
dc.citation.volume16171 LNCS-
dc.citation.startPage14-
dc.citation.endPage28-
dc.identifier.bibliographicCitationLecture Notes in Computer Science, Vol.16171 LNCS : 14-28, 2026-01-
dc.identifier.rimsid91442-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorGaussian mixture model-
dc.subject.keywordAuthorPulmonary segment segmentation-
dc.subject.keywordAuthorTransformer-
dc.type.docTypeConference paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Thoracic and Cardiovascular Surgery (흉부외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.