0 17

Cited 0 times in

Cited 0 times in

Decellularized tissue-specific hydrogels support an engineered salivary gland within a microfluidic platform

DC Field Value Language
dc.contributor.authorLam, C. Buu-
dc.contributor.authorPhan, Toan V.-
dc.contributor.authorKesdangsakonwut, Sawang-
dc.contributor.authorTummaruk, Padet-
dc.contributor.authorChaisuparat, Risa-
dc.contributor.authorYodmuang, Supansa-
dc.contributor.authorLim, Jae-yol-
dc.contributor.authorFerreira, Joao N.-
dc.date.accessioned2026-01-30T07:03:37Z-
dc.date.available2026-01-30T07:03:37Z-
dc.date.created2026-01-30-
dc.date.issued2025-01-
dc.identifier.issn2666-1381-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210418-
dc.description.abstractMucoepidermoid carcinoma (MEC) is a rare malignancy of the salivary gland (SG) that poses significant treatment challenges. This highlights the need for in vitro cancer modeling platforms towards anti-cancer drug screening applications. Emerging organ-on-a-chip (OoC) microfluidic technologies represent promising new approach methodologies (NAMS) and a real alternative to animal testing. While tissue-specific decellularized extracellular matrix (ECM) can recapitulate in vivo-like microenvironments, its application in SG-on-a-chip (SGoC) is still underexplored. This study developed an injectable porcine decellularized submandibular gland (dSMG) hydrogel for bioengineering an SG MEC tissue chip. dSMG was prepared using a chemical and enzymatic decellularization process with 0.1 % or 1 % sodium dodecyl sulfate (SDS). Both treatments effectively removed DNA content while preserving key ECM components, including collagens, glycoproteins, and mucins. Proteomic analysis revealed that 1 % SDS-treated dSMG contained a greater abundance of ECM components involved in matrix assembly and cell-ECM interactions compared to the 0.1 % group. The 1 % SDS-treated dSMG was subsequently digested with a pepsin-based buffer to form hydrogels. At 5 mg/mL, dSMG hydrogel exhibited nanofibrous architecture, thermo-responsive gelation, injectability into microfluidic devices, and minimal batch-to-batch biological variations. In static conditions, dSMG hydrogel significantly enhanced SG cell viability and mitochondria-dependent proliferation compared to Matrigel. Under gravity-driven flow, dSMG hydrogel promoted a ductal phenotype on human SG MEC cells, unlike on Matrigel. Additionally, dSMG hydrogel supported cholinergic-specific signaling and functional activity. These findings demonstrate the potential of dSMG hydrogel as a physiologically relevant matrix for SG cancer modeling towards drug screening applications in SGoC microfluidic systems. © 2025-
dc.language영어-
dc.publisherKeAi Communications Co., Ltd.-
dc.relation.isPartOfEngineered Regeneration-
dc.titleDecellularized tissue-specific hydrogels support an engineered salivary gland within a microfluidic platform-
dc.typeArticle-
dc.contributor.googleauthorLam, C. Buu-
dc.contributor.googleauthorPhan, Toan V.-
dc.contributor.googleauthorKesdangsakonwut, Sawang-
dc.contributor.googleauthorTummaruk, Padet-
dc.contributor.googleauthorChaisuparat, Risa-
dc.contributor.googleauthorYodmuang, Supansa-
dc.contributor.googleauthorLim, Jae-yol-
dc.contributor.googleauthorFerreira, Joao N.-
dc.identifier.doi10.1016/j.engreg.2025.11.002-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2666138125000167-
dc.subject.keywordDecellularized extracellular matrix-
dc.subject.keywordHydrogel-
dc.subject.keywordMicrophysiological systems-
dc.subject.keywordOrgan-on-chip microfluidic devices-
dc.subject.keywordSubmandibular gland-
dc.contributor.affiliatedAuthorLim, Jae-yol-
dc.identifier.scopusid2-s2.0-105022164854-
dc.citation.volume6-
dc.citation.startPage249-
dc.citation.endPage263-
dc.identifier.bibliographicCitationEngineered Regeneration, Vol.6 : 249-263, 2025-01-
dc.identifier.rimsid91437-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorDecellularized extracellular matrix-
dc.subject.keywordAuthorHydrogel-
dc.subject.keywordAuthorMicrophysiological systems-
dc.subject.keywordAuthorOrgan-on-chip microfluidic devices-
dc.subject.keywordAuthorSubmandibular gland-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Otorhinolaryngology (이비인후과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.