2 5

Cited 0 times in

Cited 0 times in

Development and Validation of a Machine Learning-Based Model for Methimazole Dosage Adjustment in Children and Adolescents with Hyperthyroidism

DC Field Value Language
dc.contributor.authorLee, Kanghyuck-
dc.contributor.authorKim, Joon-young-
dc.contributor.authorKo, Taehoon-
dc.contributor.authorSong, Kyungchul-
dc.date.accessioned2026-01-30T07:03:20Z-
dc.date.available2026-01-30T07:03:20Z-
dc.date.created2026-01-30-
dc.date.issued2025-08-
dc.identifier.issn0926-9630-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210408-
dc.description.abstractThis study developed a machine learning model using data from 142 children and adolescents with hyperthyroidism, with external validation conducted on 63 patients from another institution. Input variables included age, sex, height SDS, weight SDS, BMI SDS, T3, free T4, TSH, follow-up interval, and previous methimazole dose. SHAP analysis identified T3, TSH, and free T4 as the most influential factors. The model demonstrated robust performance with an RMSE of 5.15 mg (internal validation) and 3.54 mg (external validation), highlighting the potential of machine learning to optimize methimazole dose adjustment in pediatric hyperthyroidism. © 2025 The Authors.-
dc.languageEnglish-
dc.publisherIOS Press-
dc.relation.isPartOfStudies in Health Technology and Informatics-
dc.relation.isPartOfStudies in Health Technology and Informatics-
dc.subject.MESHAdolescent-
dc.subject.MESHAntithyroid Agents* / administration & dosage-
dc.subject.MESHChild-
dc.subject.MESHDrug Dosage Calculations*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHHyperthyroidism* / diagnosis-
dc.subject.MESHHyperthyroidism* / drug therapy-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMale-
dc.subject.MESHMethimazole* / administration & dosage-
dc.subject.MESHReproducibility of Results-
dc.titleDevelopment and Validation of a Machine Learning-Based Model for Methimazole Dosage Adjustment in Children and Adolescents with Hyperthyroidism-
dc.typeArticle-
dc.contributor.googleauthorLee, Kanghyuck-
dc.contributor.googleauthorKim, Joon-young-
dc.contributor.googleauthorKo, Taehoon-
dc.contributor.googleauthorSong, Kyungchul-
dc.identifier.doi10.3233/SHTI251294-
dc.relation.journalcodeJ02693-
dc.identifier.pmid40776311-
dc.subject.keywordHyperthyroidism-
dc.subject.keywordMachine learning-
dc.subject.keywordMethimazole-
dc.contributor.affiliatedAuthorKim, Joon-young-
dc.contributor.affiliatedAuthorSong, Kyungchul-
dc.identifier.scopusid2-s2.0-105013173173-
dc.citation.volume329-
dc.citation.startPage1950-
dc.citation.endPage1951-
dc.identifier.bibliographicCitationStudies in Health Technology and Informatics, Vol.329 : 1950-1951, 2025-08-
dc.identifier.rimsid91427-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorHyperthyroidism-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorMethimazole-
dc.type.docTypeConference paper-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pediatrics (소아과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.