10 21

Cited 0 times in

Cited 0 times in

Artificial intelligence-assisted prediction of Demodex mite density in facial erythema

DC Field Value Language
dc.contributor.authorKim, Jemin-
dc.contributor.authorLee, Yun Na-
dc.contributor.authorBoo, Jihee-
dc.contributor.authorOh, Inrok-
dc.contributor.authorLee, Changyoon-
dc.contributor.authorLee, Joo Hee-
dc.contributor.authorChoi, Ye Seul-
dc.contributor.authorKim, Hyun-
dc.contributor.authorNa, Jung Im-
dc.contributor.authorKim, Jihee-
dc.contributor.authorPark, Chang Ook-
dc.date.accessioned2026-01-28T05:22:40Z-
dc.date.available2026-01-28T05:22:40Z-
dc.date.created2026-01-16-
dc.date.issued2026-01-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210300-
dc.description.abstractCurrent detection methods of Demodex mite density in facial erythema are semi-invasive or operator-dependent. We developed and evaluated a deep learning model (DemodexNet) for predicting Demodex mite density and assessed its impact on the diagnostic performance of dermatologists. This study included 1,124 patients with facial erythema who underwent Demodex mite density measurement at two referral hospitals between January 2016 and August 2023. DemodexNet achieved area under the receiver operating characteristic curve values of 0.823-0.865 in internal testing, with lower values observed in the external testing set. AI-assisted evaluation was associated with an increase in diagnostic accuracy among dermatologists from 63.7% to 70.6% (P < .001). Less experienced dermatologists and those with higher trust in AI showed greater performance gains. The model recognized central facial regions and individual lesions characteristic of demodicosis. DemodexNet demonstrates promising performance in predicting Demodex mite density and significantly improves dermatologists&apos; diagnostic accuracy. As this proof-of-concept study was limited to Korean patients with Fitzpatrick skin types III-IV, validation in diverse populations is required before broader clinical application.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHAnimals-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHDeep Learning-
dc.subject.MESHErythema* / diagnosis-
dc.subject.MESHErythema* / parasitology-
dc.subject.MESHFace* / parasitology-
dc.subject.MESHFace* / pathology-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHMite Infestations* / diagnosis-
dc.subject.MESHMite Infestations* / parasitology-
dc.subject.MESHMites*-
dc.subject.MESHROC Curve-
dc.titleArtificial intelligence-assisted prediction of Demodex mite density in facial erythema-
dc.typeArticle-
dc.contributor.googleauthorKim, Jemin-
dc.contributor.googleauthorLee, Yun Na-
dc.contributor.googleauthorBoo, Jihee-
dc.contributor.googleauthorOh, Inrok-
dc.contributor.googleauthorLee, Changyoon-
dc.contributor.googleauthorLee, Joo Hee-
dc.contributor.googleauthorChoi, Ye Seul-
dc.contributor.googleauthorKim, Hyun-
dc.contributor.googleauthorNa, Jung Im-
dc.contributor.googleauthorKim, Jihee-
dc.contributor.googleauthorPark, Chang Ook-
dc.identifier.doi10.1038/s41598-025-29791-9-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid41345235-
dc.subject.keywordFacial erythema-
dc.subject.keywordRosacea-
dc.subject.keywordDemodex mites-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordDeep learning-
dc.contributor.affiliatedAuthorKim, Jemin-
dc.contributor.affiliatedAuthorBoo, Jihee-
dc.contributor.affiliatedAuthorLee, Changyoon-
dc.contributor.affiliatedAuthorLee, Joo Hee-
dc.contributor.affiliatedAuthorChoi, Ye Seul-
dc.contributor.affiliatedAuthorKim, Hyun-
dc.contributor.affiliatedAuthorKim, Jihee-
dc.contributor.affiliatedAuthorPark, Chang Ook-
dc.identifier.scopusid2-s2.0-105026916957-
dc.identifier.wosid001655621600003-
dc.citation.volume16-
dc.citation.number1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.16(1), 2026-01-
dc.identifier.rimsid91069-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorFacial erythema-
dc.subject.keywordAuthorRosacea-
dc.subject.keywordAuthorDemodex mites-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordPlusROSACEA-
dc.subject.keywordPlusFOLLICULORUM-
dc.subject.keywordPlusINFESTATION-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno456-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Dermatology (피부과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.