0 16

Cited 0 times in

Cited 0 times in

Enhanced opportunistic CT screening for osteoporosis using Machine learning derived volumetric vertebral and complementary body composition information

DC Field Value Language
dc.contributor.authorSong, Jiyoung-
dc.contributor.authorCho, Sang Wouk-
dc.contributor.authorYoo, Hye Jin-
dc.contributor.authorCho, Sung Joon-
dc.contributor.authorHong, Namki-
dc.contributor.authorYoon, Soon Ho-
dc.date.accessioned2026-01-27T06:11:33Z-
dc.date.available2026-01-27T06:11:33Z-
dc.date.created2026-01-27-
dc.date.issued2026-01-
dc.identifier.issn0720-048X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210270-
dc.description.abstractObjectives: To assess whether integrating volumetric vertebral and body composition features obtained from deep learning segmentation of CT images enhances the prediction of bone mineral density (BMD) and the classification of osteoporosis compared to single-slice lumbar vertebral attenuation. Methods: This retrospective study included 383 adults (mean age 59.8 years; 50.1 % women) undergoing routine health check-ups, with same-day abdomen CT scans and dual-energy X-ray absorptiometry (DXA). A two-stage 3DnnU-Net was developed using 475 CT scans from clinical and public datasets to segment individual thoracolumbar vertebrae. Muscle and fat were segmented using a predeveloped 3D U-Net (DeepCatch). Using these segmentations, prediction models were built to estimate DXA-derived lumbar spine, femoral neck, and total hip BMD based on vertebral features alone, combined vertebral and body composition features, and these features plus clinical data (age, sex, body mass index). Model performance was compared against conventional linear regression using single-slice lumbar (L1) attenuation. Results: Compared with lumbar vertebral attenuation alone, the model using volumetric vertebral features significantly improved BMD prediction (lumbar spine correlation coefficient: 0.92 vs. 0.56; P < 0.001) and osteoporosis classification (AUROC = 0.95 vs. 0.87, P = 0.004). Adding body composition metrics further enhanced hip BMD predictions and significantly increased sensitivity in osteoporosis classification (86 % vs. 76 %; P = 0.046), maintaining high specificity (95 %). Incorporating clinical variables provided no additional benefit. Conclusion: DL segmentation-based integration of volumetric vertebral and body composition features enables accurate prediction of lumbar and femoral BMD and improves sensitivity for osteoporosis detection.-
dc.languageEnglish-
dc.publisherElsevier Science Ireland Ltd-
dc.relation.isPartOfEUROPEAN JOURNAL OF RADIOLOGY-
dc.relation.isPartOfEUROPEAN JOURNAL OF RADIOLOGY-
dc.subject.MESHAbsorptiometry, Photon-
dc.subject.MESHAged-
dc.subject.MESHBody Composition*-
dc.subject.MESHBone Density-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHLumbar Vertebrae* / diagnostic imaging-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMale-
dc.subject.MESHMass Screening / methods-
dc.subject.MESHMiddle Aged-
dc.subject.MESHOsteoporosis* / diagnostic imaging-
dc.subject.MESHRadiographic Image Interpretation, Computer-Assisted / methods-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHSensitivity and Specificity-
dc.subject.MESHTomography, X-Ray Computed* / methods-
dc.titleEnhanced opportunistic CT screening for osteoporosis using Machine learning derived volumetric vertebral and complementary body composition information-
dc.typeArticle-
dc.contributor.googleauthorSong, Jiyoung-
dc.contributor.googleauthorCho, Sang Wouk-
dc.contributor.googleauthorYoo, Hye Jin-
dc.contributor.googleauthorCho, Sung Joon-
dc.contributor.googleauthorHong, Namki-
dc.contributor.googleauthorYoon, Soon Ho-
dc.identifier.doi10.1016/j.ejrad.2025.112555-
dc.relation.journalcodeJ00845-
dc.identifier.eissn1872-7727-
dc.identifier.pmid41275853-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0720048X25006412-
dc.subject.keywordMachine learning-
dc.subject.keywordComputed Tomography-
dc.subject.keywordSpine-
dc.subject.keywordBody composition-
dc.subject.keywordOsteoporosis-
dc.contributor.affiliatedAuthorCho, Sung Joon-
dc.contributor.affiliatedAuthorHong, Namki-
dc.identifier.scopusid2-s2.0-105022852564-
dc.identifier.wosid001629138100003-
dc.citation.volume194-
dc.identifier.bibliographicCitationEUROPEAN JOURNAL OF RADIOLOGY, Vol.194, 2026-01-
dc.identifier.rimsid91271-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorComputed Tomography-
dc.subject.keywordAuthorSpine-
dc.subject.keywordAuthorBody composition-
dc.subject.keywordAuthorOsteoporosis-
dc.subject.keywordPlusCOMPUTED-TOMOGRAPHY-
dc.subject.keywordPlusSEGMENTATION-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusMUSCLE-
dc.subject.keywordPlusSPINE-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.identifier.articleno112555-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.