5 10

Cited 0 times in

Cited 0 times in

Identifying Neurobehavioral Biomarkers of Anxiety and Treatment Response Using Virtual Reality, Electroencephalography, Magnetic Resonance Imaging, and Related Multimodal Assessments: A Longitudinal Study Protocol

DC Field Value Language
dc.contributor.authorOh, Hyemin-
dc.contributor.authorCha, Jiook-
dc.contributor.authorKim, Byung-Hoon-
dc.contributor.authorOh, Kang-Seob-
dc.contributor.authorShin, Young Chul-
dc.contributor.authorJeon, Sang-Won-
dc.contributor.authorCho, Sung Joon-
dc.contributor.authorKim, Junhyung-
dc.date.accessioned2026-01-22T05:04:22Z-
dc.date.available2026-01-22T05:04:22Z-
dc.date.created2026-01-21-
dc.date.issued2025-12-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210185-
dc.description.abstractBackground/Objectives: Anxiety disorders are highly prevalent and impairing psychiatric conditions. Conventional diagnostic approaches based on symptom checklists lack biological specificity and often fail to guide treatment decisions effectively. This study protocol outlines a multidimensional, prospective investigation designed to identify behavioral and neurobiological biomarkers predictive of treatment response in individuals with anxiety-related symptoms, grounded in the Research Domain Criteria framework. Methods: This observational, longitudinal study (NCT06773585) will include a transdiagnostic sample of clinical anxiety group alongside a healthy control group (185 participants, including 145 patients with anxiety disorders and 40 healthy controls). Participants will undergo comprehensive baseline assessments, including clinical interviews, self-report questionnaires, a virtual reality (VR)-based behavioral task, electroencephalography (EEG), electrocardiography (ECG), and structural and functional brain magnetic resonance imaging. Follow-up assessments will be conducted at 2, 6, and 12 months, with recruitment and data collection planned from 2024 to 2029. These complementary modalities are integrated to capture behavioral, physiological, and neural indicators of anxiety and its treatment response. Multimodal baseline features will be used to construct machine-learning models predicting treatment response, defined as >= 40% reduction in anxiety severity scores. Longitudinal analyses will examine symptom trajectories and neural mechanisms associated with response. Neurobiological comparisons will be made across timepoints and between responders, non-responders, and healthy controls. Conclusions: By identifying objective, biologically grounded markers of anxiety and treatment response, our findings will contribute to the development of personalized assessment tools and scalable digital interventions for psychiatric care.-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.relation.isPartOfJOURNAL OF CLINICAL MEDICINE-
dc.relation.isPartOfJOURNAL OF CLINICAL MEDICINE-
dc.titleIdentifying Neurobehavioral Biomarkers of Anxiety and Treatment Response Using Virtual Reality, Electroencephalography, Magnetic Resonance Imaging, and Related Multimodal Assessments: A Longitudinal Study Protocol-
dc.typeArticle-
dc.contributor.googleauthorOh, Hyemin-
dc.contributor.googleauthorCha, Jiook-
dc.contributor.googleauthorKim, Byung-Hoon-
dc.contributor.googleauthorOh, Kang-Seob-
dc.contributor.googleauthorShin, Young Chul-
dc.contributor.googleauthorJeon, Sang-Won-
dc.contributor.googleauthorCho, Sung Joon-
dc.contributor.googleauthorKim, Junhyung-
dc.identifier.doi10.3390/jcm15010007-
dc.relation.journalcodeJ03556-
dc.identifier.eissn2077-0383-
dc.identifier.pmid41517257-
dc.subject.keywordanxiety disorders-
dc.subject.keywordvirtual reality-
dc.subject.keywordelectroencephalography-
dc.subject.keywordmagnetic resonance imaging-
dc.subject.keywordbiomarker-
dc.contributor.affiliatedAuthorKim, Byung-Hoon-
dc.identifier.scopusid2-s2.0-105027234901-
dc.identifier.wosid001657479200001-
dc.citation.volume15-
dc.citation.number1-
dc.identifier.bibliographicCitationJOURNAL OF CLINICAL MEDICINE, Vol.15(1), 2025-12-
dc.identifier.rimsid91144-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthoranxiety disorders-
dc.subject.keywordAuthorvirtual reality-
dc.subject.keywordAuthorelectroencephalography-
dc.subject.keywordAuthormagnetic resonance imaging-
dc.subject.keywordAuthorbiomarker-
dc.subject.keywordPlusADULTS ADULT STRAIN-
dc.subject.keywordPlusR-PEAK DETECTION-
dc.subject.keywordPlusPSYCHOMETRIC PROPERTIES-
dc.subject.keywordPlusNEGATIVE AFFECT-
dc.subject.keywordPlusADVERSITY INVENTORY-
dc.subject.keywordPlusDISORDER-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusVALIDITY-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusRELIABILITY-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
dc.identifier.articleno7-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.