Cited 0 times in 
Cited 0 times in 
Impact of IgG monitoring and machine learning based prediction on outcomes of ABO incompatible kidney transplantation in blood type O recipients
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ko, Youngmin | - |
| dc.contributor.author | Kim, Jin-Myung | - |
| dc.contributor.author | Kwon, Hye Eun | - |
| dc.contributor.author | Shin, Sung | - |
| dc.contributor.author | Jung, Joo Hee | - |
| dc.contributor.author | Kim, Young Hoon | - |
| dc.contributor.author | Lee, Juhan | - |
| dc.contributor.author | Ko, Dae-Hyun | - |
| dc.contributor.author | Kwon, Hyunwook | - |
| dc.date.accessioned | 2026-01-22T02:31:08Z | - |
| dc.date.available | 2026-01-22T02:31:08Z | - |
| dc.date.created | 2026-01-16 | - |
| dc.date.issued | 2025-11 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/210174 | - |
| dc.description.abstract | ABO-incompatible kidney transplantation (ABO-i KT) facilitates transplantation across blood types; however, antibody-mediated rejection (ABMR) remains a major concern, particularly in blood type O recipients. This retrospective study evaluated the effect of immunoglobulin G (IgG) monitoring and machine learning (ML)-based IgG prediction on post-transplant outcomes in 408 ABO-i KT recipients treated between 2014 and 2020. In blood type O recipients, the introduction of IgG monitoring (Era 2) was associated with a significantly lower incidence of ABMR (P = 0.041) and acute rejection (P = 0.037) compared with Immunoglobulin M (IgM)-only monitoring (Era 1). A higher initial IgM titer was identified as a risk factor for ABMR. To address the absence of IgG data in the IgM-only cohort, an ML model was developed using 610 cases to predict pre-transplant IgG titers based on IgM levels, number of plasmapheresis sessions, and ABO blood type. The model demonstrated good predictive performance (mean absolute error [MAE] = 0.593, R2 = 0.721) and indicated that 12.2% of type O recipients in the IgM-only era were estimated to have high IgG titers (>= 1:64). These findings support the clinical utility of IgG monitoring and ML-based estimation to enhance immunologic risk stratification and optimize preconditioning strategies in ABO-i KT. | - |
| dc.language | English | - |
| dc.publisher | Nature Publishing Group | - |
| dc.relation.isPartOf | SCIENTIFIC REPORTS | - |
| dc.relation.isPartOf | SCIENTIFIC REPORTS | - |
| dc.subject.MESH | ABO Blood-Group System* / immunology | - |
| dc.subject.MESH | Adult | - |
| dc.subject.MESH | Blood Group Incompatibility* / immunology | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Graft Rejection* / blood | - |
| dc.subject.MESH | Graft Rejection* / immunology | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Immunoglobulin G* / blood | - |
| dc.subject.MESH | Immunoglobulin G* / immunology | - |
| dc.subject.MESH | Immunoglobulin M / blood | - |
| dc.subject.MESH | Kidney Transplantation* / adverse effects | - |
| dc.subject.MESH | Machine Learning* | - |
| dc.subject.MESH | Male | - |
| dc.subject.MESH | Middle Aged | - |
| dc.subject.MESH | Retrospective Studies | - |
| dc.subject.MESH | Risk Factors | - |
| dc.title | Impact of IgG monitoring and machine learning based prediction on outcomes of ABO incompatible kidney transplantation in blood type O recipients | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Ko, Youngmin | - |
| dc.contributor.googleauthor | Kim, Jin-Myung | - |
| dc.contributor.googleauthor | Kwon, Hye Eun | - |
| dc.contributor.googleauthor | Shin, Sung | - |
| dc.contributor.googleauthor | Jung, Joo Hee | - |
| dc.contributor.googleauthor | Kim, Young Hoon | - |
| dc.contributor.googleauthor | Lee, Juhan | - |
| dc.contributor.googleauthor | Ko, Dae-Hyun | - |
| dc.contributor.googleauthor | Kwon, Hyunwook | - |
| dc.identifier.doi | 10.1038/s41598-025-29310-w | - |
| dc.relation.journalcode | J02646 | - |
| dc.identifier.eissn | 2045-2322 | - |
| dc.identifier.pmid | 41291098 | - |
| dc.contributor.affiliatedAuthor | Lee, Juhan | - |
| dc.identifier.scopusid | 2-s2.0-105026297449 | - |
| dc.identifier.wosid | 001651233000010 | - |
| dc.citation.volume | 15 | - |
| dc.citation.number | 1 | - |
| dc.identifier.bibliographicCitation | SCIENTIFIC REPORTS, Vol.15(1), 2025-11 | - |
| dc.identifier.rimsid | 91105 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordPlus | ANTIBODY-MEDIATED REJECTION | - |
| dc.subject.keywordPlus | TITER | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.identifier.articleno | 45282 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.