10 17

Cited 0 times in

Cited 0 times in

Impact of IgG monitoring and machine learning based prediction on outcomes of ABO incompatible kidney transplantation in blood type O recipients

DC Field Value Language
dc.contributor.authorKo, Youngmin-
dc.contributor.authorKim, Jin-Myung-
dc.contributor.authorKwon, Hye Eun-
dc.contributor.authorShin, Sung-
dc.contributor.authorJung, Joo Hee-
dc.contributor.authorKim, Young Hoon-
dc.contributor.authorLee, Juhan-
dc.contributor.authorKo, Dae-Hyun-
dc.contributor.authorKwon, Hyunwook-
dc.date.accessioned2026-01-22T02:31:08Z-
dc.date.available2026-01-22T02:31:08Z-
dc.date.created2026-01-16-
dc.date.issued2025-11-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210174-
dc.description.abstractABO-incompatible kidney transplantation (ABO-i KT) facilitates transplantation across blood types; however, antibody-mediated rejection (ABMR) remains a major concern, particularly in blood type O recipients. This retrospective study evaluated the effect of immunoglobulin G (IgG) monitoring and machine learning (ML)-based IgG prediction on post-transplant outcomes in 408 ABO-i KT recipients treated between 2014 and 2020. In blood type O recipients, the introduction of IgG monitoring (Era 2) was associated with a significantly lower incidence of ABMR (P = 0.041) and acute rejection (P = 0.037) compared with Immunoglobulin M (IgM)-only monitoring (Era 1). A higher initial IgM titer was identified as a risk factor for ABMR. To address the absence of IgG data in the IgM-only cohort, an ML model was developed using 610 cases to predict pre-transplant IgG titers based on IgM levels, number of plasmapheresis sessions, and ABO blood type. The model demonstrated good predictive performance (mean absolute error [MAE] = 0.593, R2 = 0.721) and indicated that 12.2% of type O recipients in the IgM-only era were estimated to have high IgG titers (>= 1:64). These findings support the clinical utility of IgG monitoring and ML-based estimation to enhance immunologic risk stratification and optimize preconditioning strategies in ABO-i KT.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.subject.MESHABO Blood-Group System* / immunology-
dc.subject.MESHAdult-
dc.subject.MESHBlood Group Incompatibility* / immunology-
dc.subject.MESHFemale-
dc.subject.MESHGraft Rejection* / blood-
dc.subject.MESHGraft Rejection* / immunology-
dc.subject.MESHHumans-
dc.subject.MESHImmunoglobulin G* / blood-
dc.subject.MESHImmunoglobulin G* / immunology-
dc.subject.MESHImmunoglobulin M / blood-
dc.subject.MESHKidney Transplantation* / adverse effects-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHRisk Factors-
dc.titleImpact of IgG monitoring and machine learning based prediction on outcomes of ABO incompatible kidney transplantation in blood type O recipients-
dc.typeArticle-
dc.contributor.googleauthorKo, Youngmin-
dc.contributor.googleauthorKim, Jin-Myung-
dc.contributor.googleauthorKwon, Hye Eun-
dc.contributor.googleauthorShin, Sung-
dc.contributor.googleauthorJung, Joo Hee-
dc.contributor.googleauthorKim, Young Hoon-
dc.contributor.googleauthorLee, Juhan-
dc.contributor.googleauthorKo, Dae-Hyun-
dc.contributor.googleauthorKwon, Hyunwook-
dc.identifier.doi10.1038/s41598-025-29310-w-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid41291098-
dc.contributor.affiliatedAuthorLee, Juhan-
dc.identifier.scopusid2-s2.0-105026297449-
dc.identifier.wosid001651233000010-
dc.citation.volume15-
dc.citation.number1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.15(1), 2025-11-
dc.identifier.rimsid91105-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordPlusANTIBODY-MEDIATED REJECTION-
dc.subject.keywordPlusTITER-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno45282-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Surgery (외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.