Cited 0 times in 
Cited 0 times in 
Joint Bayesian additive regression trees for multiple nonlinear dependency networks
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Huang, Licai | - |
| dc.contributor.author | Peterson, Christine B. | - |
| dc.contributor.author | Ha, Min Jin | - |
| dc.date.accessioned | 2026-01-16T06:37:22Z | - |
| dc.date.available | 2026-01-16T06:37:22Z | - |
| dc.date.created | 2026-01-08 | - |
| dc.date.issued | 2025-12 | - |
| dc.identifier.issn | 0006-341X | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/209801 | - |
| dc.description.abstract | Identifying protein-protein interaction networks can reveal therapeutic targets in cancer; however, for heterogeneous cancers such as colorectal cancer (CRC), a pooled analysis of the entire dataset may miss subtype-specific mechanisms, whereas separate analyses of each subgroup's data may reduce the power to identify shared relations. To address this limitation, we propose a hierarchical Bayesian model for the inference of dependency networks that encourages the common selection of edges across subgroups while allowing subtype-specific connections. To allow for nonlinear dependence relations, we rely on Bayesian Additive Regression Trees (BART) to characterize the key mechanisms for each subgroup. Because BART is a flexible model that allows nonlinear effects and interactions, it is more suitable for genomic data than classical models that assume linearity. To connect the subgroups, we place a Markov random field prior on the probability of utilizing a feature in a splitting rule; this allows us to borrow strength across subgroups in identifying shared dependence relations. We illustrate the model using both simulated data and a real data application on the estimation of protein-protein interaction networks across CRC subtypes. | - |
| dc.language | 영어 | - |
| dc.publisher | OXFORD UNIV PRESS | - |
| dc.relation.isPartOf | BIOMETRICS | - |
| dc.title | Joint Bayesian additive regression trees for multiple nonlinear dependency networks | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Huang, Licai | - |
| dc.contributor.googleauthor | Peterson, Christine B. | - |
| dc.contributor.googleauthor | Ha, Min Jin | - |
| dc.identifier.doi | 10.1093/biomtc/ujaf158 | - |
| dc.identifier.pmid | 41384641 | - |
| dc.subject.keyword | Bayesian additive regression trees | - |
| dc.subject.keyword | dependency network | - |
| dc.subject.keyword | hierarchical modeling | - |
| dc.subject.keyword | Markov random field prior | - |
| dc.subject.keyword | multiple graphs | - |
| dc.contributor.affiliatedAuthor | Ha, Min Jin | - |
| dc.identifier.scopusid | 2-s2.0-105024701259 | - |
| dc.identifier.wosid | 001636615300001 | - |
| dc.citation.volume | 81 | - |
| dc.citation.number | 4 | - |
| dc.identifier.bibliographicCitation | BIOMETRICS, Vol.81(4), 2025-12 | - |
| dc.identifier.rimsid | 90733 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Bayesian additive regression trees | - |
| dc.subject.keywordAuthor | dependency network | - |
| dc.subject.keywordAuthor | hierarchical modeling | - |
| dc.subject.keywordAuthor | Markov random field prior | - |
| dc.subject.keywordAuthor | multiple graphs | - |
| dc.subject.keywordPlus | INVERSE COVARIANCE ESTIMATION | - |
| dc.subject.keywordPlus | VARIABLE SELECTION | - |
| dc.subject.keywordPlus | INFERENCE | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Biology | - |
| dc.relation.journalWebOfScienceCategory | Mathematical & Computational Biology | - |
| dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
| dc.relation.journalResearchArea | Life Sciences & Biomedicine - Other Topics | - |
| dc.relation.journalResearchArea | Mathematical & Computational Biology | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.identifier.articleno | ujaf158 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.