0 1

Cited 0 times in

Cited 0 times in

Joint Bayesian additive regression trees for multiple nonlinear dependency networks

DC Field Value Language
dc.contributor.authorHuang, Licai-
dc.contributor.authorPeterson, Christine B.-
dc.contributor.authorHa, Min Jin-
dc.date.accessioned2026-01-16T06:37:22Z-
dc.date.available2026-01-16T06:37:22Z-
dc.date.created2026-01-08-
dc.date.issued2025-12-
dc.identifier.issn0006-341X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209801-
dc.description.abstractIdentifying protein-protein interaction networks can reveal therapeutic targets in cancer; however, for heterogeneous cancers such as colorectal cancer (CRC), a pooled analysis of the entire dataset may miss subtype-specific mechanisms, whereas separate analyses of each subgroup's data may reduce the power to identify shared relations. To address this limitation, we propose a hierarchical Bayesian model for the inference of dependency networks that encourages the common selection of edges across subgroups while allowing subtype-specific connections. To allow for nonlinear dependence relations, we rely on Bayesian Additive Regression Trees (BART) to characterize the key mechanisms for each subgroup. Because BART is a flexible model that allows nonlinear effects and interactions, it is more suitable for genomic data than classical models that assume linearity. To connect the subgroups, we place a Markov random field prior on the probability of utilizing a feature in a splitting rule; this allows us to borrow strength across subgroups in identifying shared dependence relations. We illustrate the model using both simulated data and a real data application on the estimation of protein-protein interaction networks across CRC subtypes.-
dc.language영어-
dc.publisherOXFORD UNIV PRESS-
dc.relation.isPartOfBIOMETRICS-
dc.titleJoint Bayesian additive regression trees for multiple nonlinear dependency networks-
dc.typeArticle-
dc.contributor.googleauthorHuang, Licai-
dc.contributor.googleauthorPeterson, Christine B.-
dc.contributor.googleauthorHa, Min Jin-
dc.identifier.doi10.1093/biomtc/ujaf158-
dc.identifier.pmid41384641-
dc.subject.keywordBayesian additive regression trees-
dc.subject.keyworddependency network-
dc.subject.keywordhierarchical modeling-
dc.subject.keywordMarkov random field prior-
dc.subject.keywordmultiple graphs-
dc.contributor.affiliatedAuthorHa, Min Jin-
dc.identifier.scopusid2-s2.0-105024701259-
dc.identifier.wosid001636615300001-
dc.citation.volume81-
dc.citation.number4-
dc.identifier.bibliographicCitationBIOMETRICS, Vol.81(4), 2025-12-
dc.identifier.rimsid90733-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorBayesian additive regression trees-
dc.subject.keywordAuthordependency network-
dc.subject.keywordAuthorhierarchical modeling-
dc.subject.keywordAuthorMarkov random field prior-
dc.subject.keywordAuthormultiple graphs-
dc.subject.keywordPlusINVERSE COVARIANCE ESTIMATION-
dc.subject.keywordPlusVARIABLE SELECTION-
dc.subject.keywordPlusINFERENCE-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryBiology-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.relation.journalResearchAreaLife Sciences & Biomedicine - Other Topics-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaMathematics-
dc.identifier.articlenoujaf158-
Appears in Collections:
5. Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > Graduate School of Transdisciplinary Health Sciences (융합보건의료대학원) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.