Cited 0 times in 
Cited 0 times in 
CT-derived brain volumes and plasma p-Tau217 for risk stratification of amyloid positivity in early-stage Alzheimer's disease
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Yim, Sohyun | - |
| dc.contributor.author | Park, Seongbeom | - |
| dc.contributor.author | Lim, Kyoung Yoon | - |
| dc.contributor.author | Kang, Heekyoung | - |
| dc.contributor.author | Shin, Daeun | - |
| dc.contributor.author | Jang, Hyemin | - |
| dc.contributor.author | Weiner, Michael | - |
| dc.contributor.author | Zetterberg, Henrik | - |
| dc.contributor.author | Blennow, Kaj | - |
| dc.contributor.author | Gonzalez-Ortiz, Fernando | - |
| dc.contributor.author | Ashton, Nicholas J. | - |
| dc.contributor.author | Kang, Sung Hoon | - |
| dc.contributor.author | Yun, Jihwan | - |
| dc.contributor.author | Chun, Minyoung | - |
| dc.contributor.author | Kim, Eunjoo | - |
| dc.contributor.author | Kim, Heejin | - |
| dc.contributor.author | Na, Duk L. | - |
| dc.contributor.author | Kim, Jun Pyo | - |
| dc.contributor.author | Seo, Sang Won | - |
| dc.contributor.author | Kwak, Kichang | - |
| dc.date.accessioned | 2025-12-26T06:34:55Z | - |
| dc.date.available | 2025-12-26T06:34:55Z | - |
| dc.date.created | 2025-12-11 | - |
| dc.date.issued | 2025-10 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/209691 | - |
| dc.description.abstract | BackgroundEarly detection of amyloid-beta (A beta) pathology is critical for timely intervention in Alzheimer's disease (AD). While A beta positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers are accurate, their high cost and limited accessibility hinder routine use. We developed a computed tomography (CT)-based, two-stage workflow combining CT-derived atrophy patterns with plasma phosphorylated tau 217 (p-Tau217) to predict A beta PET positivity.MethodsIn this cohort of 616 participants (521 with mild cognitive impairment (MCI], 95 with early dementia of Alzheimer's type (DAT]; age 60-93 years), CT, p-Tau217 assays, and A beta PET were performed. A random forest model incorporating CT-derived regional W-scores and apolipoprotein E epsilon 4 (APOE epsilon 4) status stratified individuals into low-, intermediate-, and high-risk groups. p-Tau217 testing was reserved for the intermediate-risk group.ResultsAt a 95% sensitivity/specificity threshold, CT-based stratification yielded a low-risk negative predictive value (NPV) of 95.8% (93.0-98.6%) and a high-risk positive predictive value (PPV) of 98.4% (96.8-100.0%), with 28.2% classified as intermediate-risk. Targeted plasma testing of intermediate-risk group improved the overall PPV to 92.8% (88.5-97.1%) and the overall NPV to 88.9% (78.6-99.2%), achieving an overall accuracy of 95.8% (94.2-97.4%). The CT-based workflow's accuracy was non-inferior to our MRI-based method (area under the curve 0.96 vs. 0.95; p = 0.14).ConclusionsThis CT-based, two-stage approach is a cost-effective, scalable alternative to MRI-based strategies, leveraging routine CT and selective p-Tau217 testing to enhance early AD detection and optimize resource utilization in clinical practice. | - |
| dc.language | English | - |
| dc.publisher | BioMed Central Ltd. | - |
| dc.relation.isPartOf | ALZHEIMERS RESEARCH & THERAPY | - |
| dc.relation.isPartOf | ALZHEIMERS RESEARCH & THERAPY | - |
| dc.subject.MESH | Aged | - |
| dc.subject.MESH | Aged, 80 and over | - |
| dc.subject.MESH | Alzheimer Disease* / blood | - |
| dc.subject.MESH | Alzheimer Disease* / diagnostic imaging | - |
| dc.subject.MESH | Alzheimer Disease* / pathology | - |
| dc.subject.MESH | Amyloid beta-Peptides* / metabolism | - |
| dc.subject.MESH | Biomarkers / blood | - |
| dc.subject.MESH | Brain* / diagnostic imaging | - |
| dc.subject.MESH | Brain* / pathology | - |
| dc.subject.MESH | Cognitive Dysfunction / blood | - |
| dc.subject.MESH | Cognitive Dysfunction / diagnostic imaging | - |
| dc.subject.MESH | Cognitive Dysfunction / pathology | - |
| dc.subject.MESH | Cohort Studies | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Male | - |
| dc.subject.MESH | Middle Aged | - |
| dc.subject.MESH | Positron-Emission Tomography | - |
| dc.subject.MESH | Risk Assessment | - |
| dc.subject.MESH | Tomography, X-Ray Computed* | - |
| dc.subject.MESH | tau Proteins* / blood | - |
| dc.title | CT-derived brain volumes and plasma p-Tau217 for risk stratification of amyloid positivity in early-stage Alzheimer's disease | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Yim, Sohyun | - |
| dc.contributor.googleauthor | Park, Seongbeom | - |
| dc.contributor.googleauthor | Lim, Kyoung Yoon | - |
| dc.contributor.googleauthor | Kang, Heekyoung | - |
| dc.contributor.googleauthor | Shin, Daeun | - |
| dc.contributor.googleauthor | Jang, Hyemin | - |
| dc.contributor.googleauthor | Weiner, Michael | - |
| dc.contributor.googleauthor | Zetterberg, Henrik | - |
| dc.contributor.googleauthor | Blennow, Kaj | - |
| dc.contributor.googleauthor | Gonzalez-Ortiz, Fernando | - |
| dc.contributor.googleauthor | Ashton, Nicholas J. | - |
| dc.contributor.googleauthor | Kang, Sung Hoon | - |
| dc.contributor.googleauthor | Yun, Jihwan | - |
| dc.contributor.googleauthor | Chun, Minyoung | - |
| dc.contributor.googleauthor | Kim, Eunjoo | - |
| dc.contributor.googleauthor | Kim, Heejin | - |
| dc.contributor.googleauthor | Na, Duk L. | - |
| dc.contributor.googleauthor | Kim, Jun Pyo | - |
| dc.contributor.googleauthor | Seo, Sang Won | - |
| dc.contributor.googleauthor | Kwak, Kichang | - |
| dc.identifier.doi | 10.1186/s13195-025-01870-z | - |
| dc.relation.journalcode | J03592 | - |
| dc.identifier.eissn | 1758-9193 | - |
| dc.identifier.pmid | 41153028 | - |
| dc.subject.keyword | Alzheimer&apos | - |
| dc.subject.keyword | s disease | - |
| dc.subject.keyword | Two-stage diagnostic workflow | - |
| dc.subject.keyword | Amyloid status | - |
| dc.subject.keyword | Computed tomography | - |
| dc.subject.keyword | Plasma p-tau217 | - |
| dc.subject.keyword | Machine learning | - |
| dc.contributor.affiliatedAuthor | Chun, Minyoung | - |
| dc.identifier.scopusid | 2-s2.0-105020325268 | - |
| dc.identifier.wosid | 001602648100002 | - |
| dc.citation.volume | 17 | - |
| dc.citation.number | 1 | - |
| dc.identifier.bibliographicCitation | ALZHEIMERS RESEARCH & THERAPY, Vol.17(1), 2025-10 | - |
| dc.identifier.rimsid | 90378 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Alzheimer&apos | - |
| dc.subject.keywordAuthor | s disease | - |
| dc.subject.keywordAuthor | Two-stage diagnostic workflow | - |
| dc.subject.keywordAuthor | Amyloid status | - |
| dc.subject.keywordAuthor | Computed tomography | - |
| dc.subject.keywordAuthor | Plasma p-tau217 | - |
| dc.subject.keywordAuthor | Machine learning | - |
| dc.subject.keywordPlus | MILD COGNITIVE IMPAIRMENT | - |
| dc.subject.keywordPlus | ASSOCIATION WORKGROUPS | - |
| dc.subject.keywordPlus | DIAGNOSTIC GUIDELINES | - |
| dc.subject.keywordPlus | NATIONAL INSTITUTE | - |
| dc.subject.keywordPlus | RECOMMENDATIONS | - |
| dc.subject.keywordPlus | DEMENTIA | - |
| dc.subject.keywordPlus | ATROPHY | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Clinical Neurology | - |
| dc.relation.journalWebOfScienceCategory | Neurosciences | - |
| dc.relation.journalResearchArea | Neurosciences & Neurology | - |
| dc.identifier.articleno | 233 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.