1 3

Cited 0 times in

Cited 0 times in

Simulated virtual reality experiences for predicting early treatment response in panic disorder

DC Field Value Language
dc.contributor.authorKim, Byung-Hoon-
dc.contributor.authorKim, Jae-Jin-
dc.contributor.authorKim, Junhyung-
dc.contributor.authorCha, Jiook-
dc.contributor.authorJeon, Sang-Won-
dc.contributor.authorOh, Kang-Seob-
dc.contributor.authorShin, Dong-Won-
dc.contributor.authorCho, Sung Joon-
dc.date.accessioned2025-12-23T05:51:44Z-
dc.date.available2025-12-23T05:51:44Z-
dc.date.created2025-12-11-
dc.date.issued2025-11-
dc.identifier.issn2673-253X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209546-
dc.description.abstractBackground Panic disorder (PD) is a disabling anxiety condition in which early improvement during treatment can predict better long-term outcomes.Objectives This study investigated whether a newly developed virtual reality-based assessment tool, the Virtual Reality Assessment of Panic Disorder (VRA-PD), can help predict early treatment response in individuals with PD.Methods In total, 52 participants, including 25 patients diagnosed with PD and 27 healthy individuals, were evaluated every 2 months over a 6-month period. Assessments included self-reported anxiety levels and heart rate variability measured during virtual reality scenarios, as well as standard clinical questionnaires. Patients with PD were further categorized based on their treatment progress into early responders (n = 7) and delayed responders (n = 18). A machine-learning model (CatBoost) was used to classify participants into early responder, delayed responder, and healthy control groups.Results The model that combined virtual reality-based and conventional clinical data achieved higher accuracy (85%) and F1-score (0.71) than models using only clinical (accuracy: 77%, F1-score: 0.56) or only virtual reality data (accuracy: 75%, F1-score: 0.64). The most important predictors included anxiety levels during virtual scenarios, heart rate variability metrics, and scores from clinical scales such as the Panic Disorder Severity Scale and Anxiety Sensitivity Index.Conclusions This study highlights the value of virtual reality-based assessments for predicting early treatment outcomes in PD. By providing ecologically valid and individualized measures, virtual reality may enhance clinical decision-making and support personalized mental healthcare.-
dc.languageEnglish-
dc.publisherFrontiers Media S.A.-
dc.relation.isPartOfFRONTIERS IN DIGITAL HEALTH-
dc.relation.isPartOfFRONTIERS IN DIGITAL HEALTH-
dc.titleSimulated virtual reality experiences for predicting early treatment response in panic disorder-
dc.typeArticle-
dc.contributor.googleauthorKim, Byung-Hoon-
dc.contributor.googleauthorKim, Jae-Jin-
dc.contributor.googleauthorKim, Junhyung-
dc.contributor.googleauthorCha, Jiook-
dc.contributor.googleauthorJeon, Sang-Won-
dc.contributor.googleauthorOh, Kang-Seob-
dc.contributor.googleauthorShin, Dong-Won-
dc.contributor.googleauthorCho, Sung Joon-
dc.identifier.doi10.3389/fdgth.2025.1684001-
dc.relation.journalcodeJ04590-
dc.identifier.eissn2673-253X-
dc.identifier.pmid41281296-
dc.subject.keywordvirtual reality-
dc.subject.keywordpanic disorder-
dc.subject.keywordearly treatment response-
dc.subject.keywordmachine learning-
dc.subject.keywordanxiety-
dc.subject.keywordheart rate variability-
dc.subject.keywordVR-based assessments-
dc.contributor.affiliatedAuthorKim, Byung-Hoon-
dc.contributor.affiliatedAuthorKim, Jae-Jin-
dc.identifier.scopusid2-s2.0-105022629923-
dc.identifier.wosid001618842100001-
dc.citation.volume7-
dc.identifier.bibliographicCitationFRONTIERS IN DIGITAL HEALTH, Vol.7, 2025-11-
dc.identifier.rimsid90288-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorvirtual reality-
dc.subject.keywordAuthorpanic disorder-
dc.subject.keywordAuthorearly treatment response-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthoranxiety-
dc.subject.keywordAuthorheart rate variability-
dc.subject.keywordAuthorVR-based assessments-
dc.subject.keywordPlusHEART-RATE-VARIABILITY-
dc.subject.keywordPlusANXIETY SENSITIVITY INDEX-
dc.subject.keywordPlusRELIABILITY-
dc.subject.keywordPlusDEPRESSION-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusVALIDITY-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryHealth Care Sciences & Services-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalResearchAreaHealth Care Sciences & Services-
dc.relation.journalResearchAreaMedical Informatics-
dc.identifier.articleno1684001-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Psychiatry (정신과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.