0 17

Cited 0 times in

Cited 0 times in

Prognostic Value of A/T/N Biomarkers

DC Field Value Language
dc.contributor.authorYim, Sohyun-
dc.contributor.authorGu, Yuna-
dc.contributor.authorKang, Heekyung-
dc.contributor.authorShin, Daeun-
dc.contributor.authorJang, Hyemin-
dc.contributor.authorYoo, Heejin-
dc.contributor.authorZetterberg, Henrik-
dc.contributor.authorBlennow, Kaj-
dc.contributor.authorGonzalez-Ortiz, Fernando-
dc.contributor.authorAshton, Nicholas J.-
dc.contributor.authorWeiner, Michael W.-
dc.contributor.authorDay, Theresa A.-
dc.contributor.authorLee, Eun Hye-
dc.contributor.authorNa, Duk L.-
dc.contributor.authorKim, Hee Jin-
dc.contributor.authorKang, Sung Hoon-
dc.contributor.authorKim, Ko Woon-
dc.contributor.authorKim, Yeo Jin-
dc.contributor.authorKim, Yeshin-
dc.contributor.authorKim, Jaeho-
dc.contributor.authorChun, Min Young-
dc.contributor.authorJung, Na Yeon-
dc.contributor.authorCho, Soo Hyun-
dc.contributor.authorKim, Jun Pyo-
dc.contributor.authorYun, Jihwan-
dc.contributor.authorSeo, Sang Won-
dc.date.accessioned2025-12-23T01:22:08Z-
dc.date.available2025-12-23T01:22:08Z-
dc.date.created2025-12-11-
dc.date.issued2025-12-
dc.identifier.issn0363-9762-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209494-
dc.description.abstractBackground:Alzheimer disease (AD) is characterized by amyloid-beta plaques (A), tau tangles (T), and neurodegeneration (N), collectively defining the ATN framework. While imaging biomarkers are well-established, the prognostic value of plasma biomarkers in predicting cognitive decline remains underexplored. This study compares plasma and imaging A/T/N biomarkers in predicting cognitive decline and evaluate the impact of combining biomarkers across modalities.Patients and Methods:We conducted a longitudinal study using K-ROAD cohort participants who underwent at least 2 cognitive assessments. All participants had plasma biomarker testing (A beta ratio, p-tau181, p-tau231, p-tau217, NfL), and a subset with imaging biomarker assessments (A beta PET, tau PET, structural MRI) formed an imaging subcohort. Multiple linear regression models identified the most predictive markers within each modality and evaluated the effect of combining A/T/N biomarkers.Results:Among 1,614 plasma cohort and 130 imaging subcohort participants, tau markers demonstrated the strongest predictive value. p-tau217MSD outperforming other plasma biomarkers, and the neo-temporal ROI showing the highest predictive power among imaging biomarkers. In plasma-based model, adding neurodegeneration markers to combination of amyloid and tau biomarkers improved the performance. In imaging-based models, same strategy decreased the performance, suggesting that combinations of amyloid and tau PET captures the most relevant prognostic information.Conclusions:Imaging biomarkers, particularly tau PET, show superior prognostic accuracy compared with plasma biomarkers, whereas plasma biomarkers offer advantages in combination models through neurodegeneration markers. These findings underscore the complementary roles of plasma and imaging biomarkers and emphasize the need for tailored strategies for prognostic modeling in AD.-
dc.languageEnglish-
dc.publisherLippincott-
dc.relation.isPartOfCLINICAL NUCLEAR MEDICINE-
dc.relation.isPartOfCLINICAL NUCLEAR MEDICINE-
dc.subject.MESHAged-
dc.subject.MESHAlzheimer Disease* / blood-
dc.subject.MESHAlzheimer Disease* / diagnostic imaging-
dc.subject.MESHAmyloid beta-Peptides / blood-
dc.subject.MESHBiomarkers / blood-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHLongitudinal Studies-
dc.subject.MESHMagnetic Resonance Imaging-
dc.subject.MESHMale-
dc.subject.MESHPositron-Emission Tomography-
dc.subject.MESHPrognosis-
dc.subject.MESHtau Proteins / blood-
dc.subject.MESHtau Proteins / metabolism-
dc.titlePrognostic Value of A/T/N Biomarkers-
dc.typeArticle-
dc.contributor.googleauthorYim, Sohyun-
dc.contributor.googleauthorGu, Yuna-
dc.contributor.googleauthorKang, Heekyung-
dc.contributor.googleauthorShin, Daeun-
dc.contributor.googleauthorJang, Hyemin-
dc.contributor.googleauthorYoo, Heejin-
dc.contributor.googleauthorZetterberg, Henrik-
dc.contributor.googleauthorBlennow, Kaj-
dc.contributor.googleauthorGonzalez-Ortiz, Fernando-
dc.contributor.googleauthorAshton, Nicholas J.-
dc.contributor.googleauthorWeiner, Michael W.-
dc.contributor.googleauthorDay, Theresa A.-
dc.contributor.googleauthorLee, Eun Hye-
dc.contributor.googleauthorNa, Duk L.-
dc.contributor.googleauthorKim, Hee Jin-
dc.contributor.googleauthorKang, Sung Hoon-
dc.contributor.googleauthorKim, Ko Woon-
dc.contributor.googleauthorKim, Yeo Jin-
dc.contributor.googleauthorKim, Yeshin-
dc.contributor.googleauthorKim, Jaeho-
dc.contributor.googleauthorChun, Min Young-
dc.contributor.googleauthorJung, Na Yeon-
dc.contributor.googleauthorCho, Soo Hyun-
dc.contributor.googleauthorKim, Jun Pyo-
dc.contributor.googleauthorYun, Jihwan-
dc.contributor.googleauthorSeo, Sang Won-
dc.identifier.doi10.1097/RLU.0000000000006088-
dc.relation.journalcodeJ00595-
dc.identifier.eissn1536-0229-
dc.identifier.pmid40910876-
dc.subject.keywordalzheimer disease-
dc.subject.keywordplasma biomarkers-
dc.subject.keywordimaging biomarkers-
dc.subject.keywordATN framework-
dc.subject.keywordprediction of cognitive decline-
dc.subject.keywordprognostic modeling-
dc.contributor.affiliatedAuthorChun, Min Young-
dc.identifier.scopusid2-s2.0-105015395131-
dc.identifier.wosid001616204300002-
dc.citation.volume50-
dc.citation.number12-
dc.citation.startPage1120-
dc.citation.endPage1129-
dc.identifier.bibliographicCitationCLINICAL NUCLEAR MEDICINE, Vol.50(12) : 1120-1129, 2025-12-
dc.identifier.rimsid90227-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthoralzheimer disease-
dc.subject.keywordAuthorplasma biomarkers-
dc.subject.keywordAuthorimaging biomarkers-
dc.subject.keywordAuthorATN framework-
dc.subject.keywordAuthorprediction of cognitive decline-
dc.subject.keywordAuthorprognostic modeling-
dc.subject.keywordPlusAMYLOID-BETA-
dc.subject.keywordPlusTAU PET-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusCORTICAL THICKNESS-
dc.subject.keywordPlusPLASMA-
dc.subject.keywordPlusNEURODEGENERATION-
dc.subject.keywordPlusPATHOLOGY-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusREGISTRATION-
dc.subject.keywordPlusDEPOSITION-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.