Cited 0 times in 
Cited 0 times in 
Planet-wide performance of a skin disease AI algorithm validated in Korea
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Han, Seung Seog | - |
| dc.contributor.author | Cho, Soo Ick | - |
| dc.contributor.author | Fabian, Groger | - |
| dc.contributor.author | Navarini, Alexander A. | - |
| dc.contributor.author | Kim, Myoung Shin | - |
| dc.contributor.author | Lee, Dong Hun | - |
| dc.contributor.author | Lee, Ju Hee | - |
| dc.contributor.author | Kim, Jihee | - |
| dc.contributor.author | Won, Chong Hyun | - |
| dc.contributor.author | Bae, Kyung-Nam | - |
| dc.contributor.author | Lee, Jee-Bum | - |
| dc.contributor.author | Yoon, Hyun-Sun | - |
| dc.contributor.author | Chang, Sung Eun | - |
| dc.contributor.author | Kim, Seong Hwan | - |
| dc.contributor.author | Na, Jung Im | - |
| dc.contributor.author | Navarrete-Dechent, Cristian | - |
| dc.date.accessioned | 2025-12-02T06:34:07Z | - |
| dc.date.available | 2025-12-02T06:34:07Z | - |
| dc.date.created | 2026-01-02 | - |
| dc.date.issued | 2025-10 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/209247 | - |
| dc.description.abstract | To address the diversity of skin conditions and the low prevalence of skin cancers, we curated a large hospital dataset (National Information Society Agency, Seoul, Korea [NIA] dataset; 70 diseases, 152,443 images) and collected real-world webapp data (https://modelderm.com; 1,691,032 requests). We propose a conservative evaluation method by assessing sensitivity in hospitals and specificity in real-world use, assuming all malignancy predictions were false positives. Based on three differential diagnoses, skin cancer sensitivity in Korea was 78.2% (NIA) and specificity was 88.0% (webapp). Top-1 and Top-3 accuracies for 70 diseases (NIA) were 43.3% and 66.6%, respectively. Analysis of webapp data provides insights into disease prevalence and public interest across 228 countries. Malignancy predictions were highest in North America (2.6%) and lowest in Africa (0.9%), while benign tumors were most common in Asia (55.5%), and infectious diseases were most prevalent in Africa (17.1%). These findings suggest that AI can aid global dermatologic surveillance. | - |
| dc.description.statementOfResponsibility | open | - |
| dc.language | English | - |
| dc.publisher | Nature Publishing Group | - |
| dc.relation.isPartOf | NPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine) | - |
| dc.rights | CC BY-NC-ND 2.0 KR | - |
| dc.title | Planet-wide performance of a skin disease AI algorithm validated in Korea | - |
| dc.type | Article | - |
| dc.contributor.college | College of Medicine (의과대학) | - |
| dc.contributor.department | Dept. of Dermatology (피부과학교실) | - |
| dc.contributor.googleauthor | Han, Seung Seog | - |
| dc.contributor.googleauthor | Cho, Soo Ick | - |
| dc.contributor.googleauthor | Fabian, Groger | - |
| dc.contributor.googleauthor | Navarini, Alexander A. | - |
| dc.contributor.googleauthor | Kim, Myoung Shin | - |
| dc.contributor.googleauthor | Lee, Dong Hun | - |
| dc.contributor.googleauthor | Lee, Ju Hee | - |
| dc.contributor.googleauthor | Kim, Jihee | - |
| dc.contributor.googleauthor | Won, Chong Hyun | - |
| dc.contributor.googleauthor | Bae, Kyung-Nam | - |
| dc.contributor.googleauthor | Lee, Jee-Bum | - |
| dc.contributor.googleauthor | Yoon, Hyun-Sun | - |
| dc.contributor.googleauthor | Chang, Sung Eun | - |
| dc.contributor.googleauthor | Kim, Seong Hwan | - |
| dc.contributor.googleauthor | Na, Jung Im | - |
| dc.contributor.googleauthor | Navarrete-Dechent, Cristian | - |
| dc.identifier.doi | 10.1038/s41746-025-01980-w | - |
| dc.relation.journalcode | J03796 | - |
| dc.identifier.eissn | 2398-6352 | - |
| dc.identifier.pmid | 41062650 | - |
| dc.contributor.alternativeName | Lee, Ju Hee | - |
| dc.contributor.affiliatedAuthor | Lee, Ju Hee | - |
| dc.identifier.scopusid | 2-s2.0-105018580120 | - |
| dc.identifier.wosid | 001590987600001 | - |
| dc.citation.volume | 8 | - |
| dc.citation.number | 1 | - |
| dc.identifier.bibliographicCitation | NPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine), Vol.8(1), 2025-10 | - |
| dc.identifier.rimsid | 90603 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordPlus | ARTIFICIAL-INTELLIGENCE | - |
| dc.subject.keywordPlus | DERMATOLOGISTS | - |
| dc.subject.keywordPlus | CLASSIFICATION | - |
| dc.subject.keywordPlus | DIAGNOSIS | - |
| dc.subject.keywordPlus | CANCER | - |
| dc.subject.keywordPlus | BURDEN | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Health Care Sciences & Services | - |
| dc.relation.journalWebOfScienceCategory | Medical Informatics | - |
| dc.relation.journalResearchArea | Health Care Sciences & Services | - |
| dc.relation.journalResearchArea | Medical Informatics | - |
| dc.identifier.articleno | 603 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.