18 44

Cited 0 times in

Cited 0 times in

Planet-wide performance of a skin disease AI algorithm validated in Korea

DC Field Value Language
dc.contributor.authorHan, Seung Seog-
dc.contributor.authorCho, Soo Ick-
dc.contributor.authorFabian, Groger-
dc.contributor.authorNavarini, Alexander A.-
dc.contributor.authorKim, Myoung Shin-
dc.contributor.authorLee, Dong Hun-
dc.contributor.authorLee, Ju Hee-
dc.contributor.authorKim, Jihee-
dc.contributor.authorWon, Chong Hyun-
dc.contributor.authorBae, Kyung-Nam-
dc.contributor.authorLee, Jee-Bum-
dc.contributor.authorYoon, Hyun-Sun-
dc.contributor.authorChang, Sung Eun-
dc.contributor.authorKim, Seong Hwan-
dc.contributor.authorNa, Jung Im-
dc.contributor.authorNavarrete-Dechent, Cristian-
dc.date.accessioned2025-12-02T06:34:07Z-
dc.date.available2025-12-02T06:34:07Z-
dc.date.created2026-01-02-
dc.date.issued2025-10-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209247-
dc.description.abstractTo address the diversity of skin conditions and the low prevalence of skin cancers, we curated a large hospital dataset (National Information Society Agency, Seoul, Korea [NIA] dataset; 70 diseases, 152,443 images) and collected real-world webapp data (https://modelderm.com; 1,691,032 requests). We propose a conservative evaluation method by assessing sensitivity in hospitals and specificity in real-world use, assuming all malignancy predictions were false positives. Based on three differential diagnoses, skin cancer sensitivity in Korea was 78.2% (NIA) and specificity was 88.0% (webapp). Top-1 and Top-3 accuracies for 70 diseases (NIA) were 43.3% and 66.6%, respectively. Analysis of webapp data provides insights into disease prevalence and public interest across 228 countries. Malignancy predictions were highest in North America (2.6%) and lowest in Africa (0.9%), while benign tumors were most common in Asia (55.5%), and infectious diseases were most prevalent in Africa (17.1%). These findings suggest that AI can aid global dermatologic surveillance.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine)-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titlePlanet-wide performance of a skin disease AI algorithm validated in Korea-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Dermatology (피부과학교실)-
dc.contributor.googleauthorHan, Seung Seog-
dc.contributor.googleauthorCho, Soo Ick-
dc.contributor.googleauthorFabian, Groger-
dc.contributor.googleauthorNavarini, Alexander A.-
dc.contributor.googleauthorKim, Myoung Shin-
dc.contributor.googleauthorLee, Dong Hun-
dc.contributor.googleauthorLee, Ju Hee-
dc.contributor.googleauthorKim, Jihee-
dc.contributor.googleauthorWon, Chong Hyun-
dc.contributor.googleauthorBae, Kyung-Nam-
dc.contributor.googleauthorLee, Jee-Bum-
dc.contributor.googleauthorYoon, Hyun-Sun-
dc.contributor.googleauthorChang, Sung Eun-
dc.contributor.googleauthorKim, Seong Hwan-
dc.contributor.googleauthorNa, Jung Im-
dc.contributor.googleauthorNavarrete-Dechent, Cristian-
dc.identifier.doi10.1038/s41746-025-01980-w-
dc.relation.journalcodeJ03796-
dc.identifier.eissn2398-6352-
dc.identifier.pmid41062650-
dc.contributor.alternativeNameLee, Ju Hee-
dc.contributor.affiliatedAuthorLee, Ju Hee-
dc.identifier.scopusid2-s2.0-105018580120-
dc.identifier.wosid001590987600001-
dc.citation.volume8-
dc.citation.number1-
dc.identifier.bibliographicCitationNPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine), Vol.8(1), 2025-10-
dc.identifier.rimsid90603-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordPlusARTIFICIAL-INTELLIGENCE-
dc.subject.keywordPlusDERMATOLOGISTS-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusCANCER-
dc.subject.keywordPlusBURDEN-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryHealth Care Sciences & Services-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalResearchAreaHealth Care Sciences & Services-
dc.relation.journalResearchAreaMedical Informatics-
dc.identifier.articleno603-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Dermatology (피부과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.