5 13

Cited 0 times in

Cited 0 times in

Advanced echocardiography and cluster analysis to identify secondary tricuspid regurgitation phenogroups at different risk

Authors
 Luigi P Badano  ;  Marco Penso  ;  Michele Tomaselli  ;  Kyu Kim  ;  Alexandra Clement  ;  Noela Radu  ;  Geu-Ru Hong  ;  Diana R Hădăreanu  ;  Alexandra Buta  ;  Caterina Delcea  ;  Samantha Fisicaro  ;  Gianfranco Parati  ;  Chi Young Shim  ;  Denisa Muraru 
Citation
 REVISTA ESPANOLA DE CARDIOLOGIA, Vol.78(10) : 838-847, 2025-10 
Journal Title
REVISTA ESPANOLA DE CARDIOLOGIA
ISSN
 0300-8932 
Issue Date
2025-10
MeSH
Aged ; Cluster Analysis ; Echocardiography* / methods ; Female ; Follow-Up Studies ; Humans ; Male ; Middle Aged ; Prognosis ; Retrospective Studies ; Risk Assessment / methods ; Risk Factors ; Severity of Illness Index ; Tricuspid Valve Insufficiency* / diagnosis ; Tricuspid Valve Insufficiency* / diagnostic imaging ; Tricuspid Valve Insufficiency* / etiology ; Tricuspid Valve Insufficiency* / mortality ; Tricuspid Valve Insufficiency* / physiopathology
Keywords
3-dimensional echocardiography ; Análisis de conglomerados no supervisado ; Aprendizaje automático ; Ecocardiografía speckle-tracking ; Ecocardiografía tridimensional ; Fenogrupos ; Insuficiencia tricuspídea secundaria ; Machine learning ; Outcomes ; Phenogroups ; Resultados ; Secondary tricuspid regurgitation ; Speckle-tracking echocardiography ; Unsupervised cluster analysis
Abstract
Introduction and objectives: Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.

Methods: We analyzed 758 patients with moderate-to-severe STR: 558 (74±14 years, 55% women) in the derivation cohort and 200 (73±12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.

Results: We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%CI, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; P<.001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; P<.001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; P=.002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy=0.91, precision=0.91, recall=0.91, and F1 score=0.91) and in the validation cohort (accuracy=0.80, precision=0.78, recall=0.78, and F1 score=0.77).

Conclusions: The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.
Files in This Item:
T202507137.pdf Download
DOI
10.1016/j.rec.2025.02.004
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Shim, Chi Young(심지영) ORCID logo https://orcid.org/0000-0002-6136-0136
Hong, Geu Ru(홍그루) ORCID logo https://orcid.org/0000-0003-4981-3304
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/209240
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links