0 16

Cited 0 times in

Cited 0 times in

PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model

DC Field Value Language
dc.contributor.authorKoh, Seunghee-
dc.contributor.authorLee, Chanho-
dc.contributor.authorLee, Jae Young-
dc.contributor.authorChoi, Jaehyun-
dc.contributor.authorYoon, Youngno-
dc.contributor.authorLee, Changyoung-
dc.contributor.authorKim, Junmo-
dc.date.accessioned2025-11-18T01:56:04Z-
dc.date.available2025-11-18T01:56:04Z-
dc.date.created2025-07-16-
dc.date.issued2025-01-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208936-
dc.description.abstractThe lung exhibits a complex hierarchical structure comprising lobes and pulmonary segments. With recent advancements in lung cancer treatment, there's a growing demand for precise segmentation between lung segments. However, there is a challenge that segments are not differentiated by visual features, but outlined by invisible borders constructed from the border of each lobe, bronchus, pulmonary artery, and vein. To tackle the issue, we introduce a novel framework for determining intersegmental border within a lobe, the Pulmonary Segment segmentation model based on the point-cloud Gaussian Mixture Model (PSGMM). PSGMM takes the bronchus, artery, vein, and lobe surface in point-cloud form, to construct the probability map of each segment in the form of a Gaussian mixture model. PSGMM is designed to emulate a physician's examination mechanism by considering anatomical features and provides reliable and promising results.-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfSHAPE IN MEDICAL IMAGING, SHAPEMI 2024-
dc.relation.isPartOfLecture Notes in Computer Science-
dc.titlePSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model-
dc.typeArticle-
dc.contributor.googleauthorKoh, Seunghee-
dc.contributor.googleauthorLee, Chanho-
dc.contributor.googleauthorLee, Jae Young-
dc.contributor.googleauthorChoi, Jaehyun-
dc.contributor.googleauthorYoon, Youngno-
dc.contributor.googleauthorLee, Changyoung-
dc.contributor.googleauthorKim, Junmo-
dc.identifier.doi10.1007/978-3-031-75291-9_2-
dc.relation.journalcodeJ02160-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-031-75291-9_2-
dc.subject.keywordPulmonary segment segmentation-
dc.subject.keywordGaussian mixture model-
dc.subject.keywordPoint cloud-
dc.contributor.affiliatedAuthorLee, Changyoung-
dc.identifier.wosid001423141800002-
dc.citation.volume15275-
dc.citation.startPage18-
dc.citation.endPage32-
dc.identifier.bibliographicCitationSHAPE IN MEDICAL IMAGING, SHAPEMI 2024, Vol.15275 : 18-32, 2025-01-
dc.identifier.rimsid87948-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorPulmonary segment segmentation-
dc.subject.keywordAuthorGaussian mixture model-
dc.subject.keywordAuthorPoint cloud-
dc.subject.keywordPlusAIRWAY-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Thoracic and Cardiovascular Surgery (흉부외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.