Cited 0 times in 
Cited 0 times in 
PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Koh, Seunghee | - |
| dc.contributor.author | Lee, Chanho | - |
| dc.contributor.author | Lee, Jae Young | - |
| dc.contributor.author | Choi, Jaehyun | - |
| dc.contributor.author | Yoon, Youngno | - |
| dc.contributor.author | Lee, Changyoung | - |
| dc.contributor.author | Kim, Junmo | - |
| dc.date.accessioned | 2025-11-18T01:56:04Z | - |
| dc.date.available | 2025-11-18T01:56:04Z | - |
| dc.date.created | 2025-07-16 | - |
| dc.date.issued | 2025-01 | - |
| dc.identifier.issn | 0302-9743 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208936 | - |
| dc.description.abstract | The lung exhibits a complex hierarchical structure comprising lobes and pulmonary segments. With recent advancements in lung cancer treatment, there's a growing demand for precise segmentation between lung segments. However, there is a challenge that segments are not differentiated by visual features, but outlined by invisible borders constructed from the border of each lobe, bronchus, pulmonary artery, and vein. To tackle the issue, we introduce a novel framework for determining intersegmental border within a lobe, the Pulmonary Segment segmentation model based on the point-cloud Gaussian Mixture Model (PSGMM). PSGMM takes the bronchus, artery, vein, and lobe surface in point-cloud form, to construct the probability map of each segment in the form of a Gaussian mixture model. PSGMM is designed to emulate a physician's examination mechanism by considering anatomical features and provides reliable and promising results. | - |
| dc.language | English | - |
| dc.publisher | Springer | - |
| dc.relation.isPartOf | SHAPE IN MEDICAL IMAGING, SHAPEMI 2024 | - |
| dc.relation.isPartOf | Lecture Notes in Computer Science | - |
| dc.title | PSGMM: Pulmonary Segment Segmentation Based on Gaussian Mixture Model | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Koh, Seunghee | - |
| dc.contributor.googleauthor | Lee, Chanho | - |
| dc.contributor.googleauthor | Lee, Jae Young | - |
| dc.contributor.googleauthor | Choi, Jaehyun | - |
| dc.contributor.googleauthor | Yoon, Youngno | - |
| dc.contributor.googleauthor | Lee, Changyoung | - |
| dc.contributor.googleauthor | Kim, Junmo | - |
| dc.identifier.doi | 10.1007/978-3-031-75291-9_2 | - |
| dc.relation.journalcode | J02160 | - |
| dc.identifier.url | https://link.springer.com/chapter/10.1007/978-3-031-75291-9_2 | - |
| dc.subject.keyword | Pulmonary segment segmentation | - |
| dc.subject.keyword | Gaussian mixture model | - |
| dc.subject.keyword | Point cloud | - |
| dc.contributor.affiliatedAuthor | Lee, Changyoung | - |
| dc.identifier.wosid | 001423141800002 | - |
| dc.citation.volume | 15275 | - |
| dc.citation.startPage | 18 | - |
| dc.citation.endPage | 32 | - |
| dc.identifier.bibliographicCitation | SHAPE IN MEDICAL IMAGING, SHAPEMI 2024, Vol.15275 : 18-32, 2025-01 | - |
| dc.identifier.rimsid | 87948 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Pulmonary segment segmentation | - |
| dc.subject.keywordAuthor | Gaussian mixture model | - |
| dc.subject.keywordAuthor | Point cloud | - |
| dc.subject.keywordPlus | AIRWAY | - |
| dc.type.docType | Proceedings Paper | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
| dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.