0 22

Cited 8 times in

Cited 0 times in

SegRap2023: A benchmark of organs-at-risk and gross tumor volume Seg mentation for Ra diotherapy P lanning of Nasopharyngeal Carcinoma

Authors
 Luo, Xiangde  ;  Fu, Jia  ;  Zhong, Yunxin  ;  Liu, Shuolin  ;  Han, Bing  ;  Astaraki, Mehdi  ;  Bendazzoli, Simone  ;  Toma-Dasu, Iuliana  ;  Ye, Yiwen  ;  Chen, Ziyang  ;  Xia, Yong  ;  Su, Yanzhou  ;  Ye, Jin  ;  He, Junjun  ;  Xing, Zhaohu  ;  Wang, Hongqiu  ;  Zhu, Lei  ;  Yang, Kaixiang  ;  Fang, Xin  ;  Wang, Zhiwei  ;  Lee, Chan Woong  ;  Park, Sang Joon  ;  Chun, Jaehee  ;  Ulrich, Constantin  ;  Maier-Hein, Klaus H.  ;  Ndipenoch, Nchongmaje  ;  Miron, Alina  ;  Li, Yongmin  ;  Zhang, Yimeng  ;  Chen, Yu  ;  Bai, Lu  ;  Huang, Jinlong  ;  An, Chengyang  ;  Wang, Lisheng  ;  Huang, Kaiwen  ;  Gu, Yunqi  ;  Zhou, Tao  ;  Zhou, Mu  ;  Zhang, Shichuan  ;  Liao, Wenjun  ;  Wang, Guotai  ;  Zhang, Shaoting 
Citation
 MEDICAL IMAGE ANALYSIS, Vol.101, 2025-04 
Article Number
 103447 
Journal Title
MEDICAL IMAGE ANALYSIS
ISSN
 1361-8415 
Issue Date
2025-04
MeSH
Benchmarking ; Deep Learning ; Humans ; Nasopharyngeal Carcinoma* / diagnostic imaging ; Nasopharyngeal Carcinoma* / pathology ; Nasopharyngeal Carcinoma* / radiotherapy ; Nasopharyngeal Neoplasms* / diagnostic imaging ; Nasopharyngeal Neoplasms* / pathology ; Nasopharyngeal Neoplasms* / radiotherapy ; Organs at Risk* / diagnostic imaging ; Organs at Risk* / radiation effects ; Radiotherapy Planning, Computer-Assisted* / methods ; Tomography, X-Ray Computed* / methods ; Tumor Burden
Keywords
Nasopharyngeal carcinoma ; Organ-at-risk ; Gross tumor volume ; Segmentation
Abstract
Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation. To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans. The challenge aimed to segment 45 OARs and 2 GTVs from the paired CT scans per patient, and received 10 and 11 complete submissions for the two tasks, respectively. In this paper, we detail the challenge and analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions ranged from 76.68% to 86.70%, and 70.42% to 73.44% for OARs and GTVs, respectively. We conclude that the segmentation of relatively large OARs is well-addressed, and more efforts are needed for GTVs and small or thin OARs. The benchmark remains available at: https://segrap2023.grand-challenge.org.
Full Text
https://www.sciencedirect.com/science/article/pii/S1361841524003748
DOI
10.1016/j.media.2024.103447
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers
Yonsei Authors
Park, Sang Joon(박상준)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/208876
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links