Cited 5 times in 
Cited 0 times in 
Deciphering the intratumoral histologic heterogeneity of lung adenocarcinoma using radiomics
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Koo, Jae Mo | - |
| dc.contributor.author | Kim, Jonghoon | - |
| dc.contributor.author | Lee, Junghee | - |
| dc.contributor.author | Hwang, Soohyun | - |
| dc.contributor.author | Shim, Hyo Sup | - |
| dc.contributor.author | Hong, Tae Hee | - |
| dc.contributor.author | Oh, Yu Jin | - |
| dc.contributor.author | Kim, Hong Kwan | - |
| dc.contributor.author | Lee, Chang Young | - |
| dc.contributor.author | Park, Byung Jo | - |
| dc.contributor.author | Lee, Ho Yun | - |
| dc.date.accessioned | 2025-11-17T00:47:12Z | - |
| dc.date.available | 2025-11-17T00:47:12Z | - |
| dc.date.created | 2025-07-22 | - |
| dc.date.issued | 2025-08 | - |
| dc.identifier.issn | 0938-7994 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208852 | - |
| dc.description.abstract | ObjectiveTo discern highly aggressive intratumoral areas among lung adenocarcinoma (LUAD) and its impact on occult nodal metastases and the recurrence rate with radiomic analysis.MethodsThis prospective dual-institution study analyzed clinical information and high-resolution preoperative CT of 528 patients from institution A and 249 patients from institution B. We extracted radiomic features and performed pathologic evaluations for resected tumors, based on the 2020 International Association for the Study of Lung Cancer (IASLC) classification. Prediction models were developed to discern micropapillary and solid patterns within LUAD using clinical and radiomic features from institution A through logistic analysis.ResultsSix selected CT radiomic features, sex, CTR (consolidation-to-tumor ratio), and solid diameter were selected to develop the prediction models. A composite model of radiomic and clinical characteristics outperformed radiomics-only and clinical-only models (AUC, 95% CI; the composite model: 0.84 [0.81-0.87]; the radiomics model: 0.82 [0.78-0.87]; the clinical model: 0.80 [0.76-0.83]) in institution A. External validation was performed with institution B cohort, showing even better results (AUC, 95% CI; the composite model: 0.91 [0.87-0.94]; the radiomics model: 0.89 [0.84-0.94]; the clinical model: 0.88 [0.84-0.92]).ConclusionsOur study underscores the potential of radiomics to preoperatively predict aggressive histologic patterns in LUAD, enabling precise treatment planning and prognosis estimation.Key PointsQuestionCan any adjuvant methods address the limitations of core needle biopsies, which are invasive and may not capture the full heterogeneity of lung adenocarcinoma?FindingsIn a prospective study of 528 patients with cT1N0M0 lung adenocarcinoma, a composite model of clinical characteristics, conventional CT findings, and radiomics features predicted high-grade cancers.Clinical relevancePreoperative non-invasive diagnosis of histologically high-grade tumors using radiomics analysis offers crucial information for the treatment of lung adenocarcinoma with respect to occult lymph node metastasis and recurrence rate.Key PointsQuestionCan any adjuvant methods address the limitations of core needle biopsies, which are invasive and may not capture the full heterogeneity of lung adenocarcinoma?FindingsIn a prospective study of 528 patients with cT1N0M0 lung adenocarcinoma, a composite model of clinical characteristics, conventional CT findings, and radiomics features predicted high-grade cancers.Clinical relevancePreoperative non-invasive diagnosis of histologically high-grade tumors using radiomics analysis offers crucial information for the treatment of lung adenocarcinoma with respect to occult lymph node metastasis and recurrence rate.Key PointsQuestionCan any adjuvant methods address the limitations of core needle biopsies, which are invasive and may not capture the full heterogeneity of lung adenocarcinoma?FindingsIn a prospective study of 528 patients with cT1N0M0 lung adenocarcinoma, a composite model of clinical characteristics, conventional CT findings, and radiomics features predicted high-grade cancers.Clinical relevancePreoperative non-invasive diagnosis of histologically high-grade tumors using radiomics analysis offers crucial information for the treatment of lung adenocarcinoma with respect to occult lymph node metastasis and recurrence rate. | - |
| dc.language | English | - |
| dc.publisher | Springer International | - |
| dc.relation.isPartOf | EUROPEAN RADIOLOGY | - |
| dc.relation.isPartOf | EUROPEAN RADIOLOGY | - |
| dc.subject.MESH | Adenocarcinoma of Lung* / diagnostic imaging | - |
| dc.subject.MESH | Adenocarcinoma of Lung* / pathology | - |
| dc.subject.MESH | Aged | - |
| dc.subject.MESH | Aged, 80 and over | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Lung Neoplasms* / diagnostic imaging | - |
| dc.subject.MESH | Lung Neoplasms* / pathology | - |
| dc.subject.MESH | Lymphatic Metastasis | - |
| dc.subject.MESH | Male | - |
| dc.subject.MESH | Middle Aged | - |
| dc.subject.MESH | Prospective Studies | - |
| dc.subject.MESH | Radiomics | - |
| dc.subject.MESH | Tomography, X-Ray Computed* / methods | - |
| dc.title | Deciphering the intratumoral histologic heterogeneity of lung adenocarcinoma using radiomics | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Koo, Jae Mo | - |
| dc.contributor.googleauthor | Kim, Jonghoon | - |
| dc.contributor.googleauthor | Lee, Junghee | - |
| dc.contributor.googleauthor | Hwang, Soohyun | - |
| dc.contributor.googleauthor | Shim, Hyo Sup | - |
| dc.contributor.googleauthor | Hong, Tae Hee | - |
| dc.contributor.googleauthor | Oh, Yu Jin | - |
| dc.contributor.googleauthor | Kim, Hong Kwan | - |
| dc.contributor.googleauthor | Lee, Chang Young | - |
| dc.contributor.googleauthor | Park, Byung Jo | - |
| dc.contributor.googleauthor | Lee, Ho Yun | - |
| dc.identifier.doi | 10.1007/s00330-025-11397-4 | - |
| dc.relation.journalcode | J00851 | - |
| dc.identifier.eissn | 1432-1084 | - |
| dc.identifier.pmid | 39939422 | - |
| dc.identifier.url | https://link.springer.com/article/10.1007/s00330-025-11397-4 | - |
| dc.subject.keyword | Lung adenocarcinoma | - |
| dc.subject.keyword | Metastasis | - |
| dc.subject.keyword | Computed tomography | - |
| dc.subject.keyword | Radiomics | - |
| dc.contributor.affiliatedAuthor | Shim, Hyo Sup | - |
| dc.contributor.affiliatedAuthor | Lee, Chang Young | - |
| dc.contributor.affiliatedAuthor | Park, Byung Jo | - |
| dc.identifier.scopusid | 2-s2.0-85218847626 | - |
| dc.identifier.wosid | 001418898400001 | - |
| dc.citation.volume | 35 | - |
| dc.citation.number | 8 | - |
| dc.citation.startPage | 4861 | - |
| dc.citation.endPage | 4872 | - |
| dc.identifier.bibliographicCitation | EUROPEAN RADIOLOGY, Vol.35(8) : 4861-4872, 2025-08 | - |
| dc.identifier.rimsid | 88016 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Lung adenocarcinoma | - |
| dc.subject.keywordAuthor | Metastasis | - |
| dc.subject.keywordAuthor | Computed tomography | - |
| dc.subject.keywordAuthor | Radiomics | - |
| dc.subject.keywordPlus | INVASIVE PULMONARY ADENOCARCINOMA | - |
| dc.subject.keywordPlus | INTERNATIONAL ASSOCIATION | - |
| dc.subject.keywordPlus | MICROPAPILLARY PATTERN | - |
| dc.subject.keywordPlus | IMAGING BIOMARKERS | - |
| dc.subject.keywordPlus | GRADING SYSTEM | - |
| dc.subject.keywordPlus | CANCER | - |
| dc.subject.keywordPlus | CLASSIFICATION | - |
| dc.subject.keywordPlus | SURVIVAL | - |
| dc.subject.keywordPlus | IMPACT | - |
| dc.subject.keywordPlus | VALIDATION | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
| dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.