Cited 1 times in 
Cited 0 times in 
Redefining Trauma Triage for Elderly Adults: Development of Age-Specific Guidelines for Improved Patient Outcomes Based on a Machine-Learning Algorithm
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lim, Ji Yeon | - |
| dc.contributor.author | Jee, Yongho | - |
| dc.contributor.author | Choi, Seong Gyu | - |
| dc.contributor.author | Choi, Yoon Hee | - |
| dc.contributor.author | Torbati, Sam S. | - |
| dc.contributor.author | Berdahl, Carl T. | - |
| dc.contributor.author | Lee, Sun Hwa | - |
| dc.date.accessioned | 2025-11-10T07:37:36Z | - |
| dc.date.available | 2025-11-10T07:37:36Z | - |
| dc.date.created | 2025-08-21 | - |
| dc.date.issued | 2025-04 | - |
| dc.identifier.issn | 1010-660X | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208562 | - |
| dc.description.abstract | Background and Objectives: Elderly trauma patients face unique physiological challenges that often lead to undertriage under the current guidelines. The present study aimed to develop machine-learning (ML)-based, age-specific triage guidelines to improve predictions for intensive care unit (ICU) admissions and in-hospital mortality. Materials and Methods: A total of 274,347 trauma cases transported via Emergency Medical System (EMS)-119 in Seoul (2020-2022) were analyzed. Physiological indicators (e.g., systolic blood pressure; saturation of partial pressure oxygen; and alert, verbal, pain, unresponsiveness scale) were incorporated. Bayesian optimization was used to fine-tuned models for sensitivity and specificity, emphasizing the F2 score to minimize undertriage. Results: Compared with the current guidelines, the alternative guidelines achieved superior sensitivity for ICU admissions (0.728 vs. 0.541) and in-hospital mortality (0.815 vs. 0.599). Subgroup analyses across injury severities, including traumatic brain and chest injuries, confirmed the enhanced performance of the alternative guidelines. Conclusions: ML-based, age-specific triage guidelines improve the sensitivity of triage decisions, reduce undertriage, and optimize elderly trauma care. Implementing these guidelines can significantly enhance patient outcomes and resource allocation in emergency settings. | - |
| dc.language | English | - |
| dc.publisher | MDPI | - |
| dc.relation.isPartOf | MEDICINA-LITHUANIA | - |
| dc.relation.isPartOf | MEDICINA-LITHUANIA | - |
| dc.subject.MESH | Age Factors | - |
| dc.subject.MESH | Aged | - |
| dc.subject.MESH | Aged, 80 and over | - |
| dc.subject.MESH | Algorithms | - |
| dc.subject.MESH | Bayes Theorem | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Hospital Mortality | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Intensive Care Units / statistics & numerical data | - |
| dc.subject.MESH | Machine Learning* | - |
| dc.subject.MESH | Male | - |
| dc.subject.MESH | Middle Aged | - |
| dc.subject.MESH | Practice Guidelines as Topic | - |
| dc.subject.MESH | Republic of Korea | - |
| dc.subject.MESH | Triage* / methods | - |
| dc.subject.MESH | Triage* / standards | - |
| dc.subject.MESH | Wounds and Injuries* / mortality | - |
| dc.title | Redefining Trauma Triage for Elderly Adults: Development of Age-Specific Guidelines for Improved Patient Outcomes Based on a Machine-Learning Algorithm | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Lim, Ji Yeon | - |
| dc.contributor.googleauthor | Jee, Yongho | - |
| dc.contributor.googleauthor | Choi, Seong Gyu | - |
| dc.contributor.googleauthor | Choi, Yoon Hee | - |
| dc.contributor.googleauthor | Torbati, Sam S. | - |
| dc.contributor.googleauthor | Berdahl, Carl T. | - |
| dc.contributor.googleauthor | Lee, Sun Hwa | - |
| dc.identifier.doi | 10.3390/medicina61050784 | - |
| dc.relation.journalcode | J03886 | - |
| dc.identifier.eissn | 1648-9144 | - |
| dc.identifier.pmid | 40428742 | - |
| dc.identifier.url | https://www.mdpi.com/1648-9144/61/5/784 | - |
| dc.subject.keyword | age-specific triage guideline | - |
| dc.subject.keyword | elderly trauma patients | - |
| dc.subject.keyword | machine learning | - |
| dc.contributor.affiliatedAuthor | Choi, Seong Gyu | - |
| dc.identifier.scopusid | 2-s2.0-105006718075 | - |
| dc.identifier.wosid | 001496233200001 | - |
| dc.citation.volume | 61 | - |
| dc.citation.number | 5 | - |
| dc.identifier.bibliographicCitation | MEDICINA-LITHUANIA, Vol.61(5), 2025-04 | - |
| dc.identifier.rimsid | 88736 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | age-specific triage guideline | - |
| dc.subject.keywordAuthor | elderly trauma patients | - |
| dc.subject.keywordAuthor | machine learning | - |
| dc.subject.keywordPlus | OLDER-ADULTS | - |
| dc.subject.keywordPlus | FIELD-TRIAGE | - |
| dc.subject.keywordPlus | COMORBIDITIES | - |
| dc.subject.keywordPlus | SCORE | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Medicine, General & Internal | - |
| dc.relation.journalResearchArea | General & Internal Medicine | - |
| dc.identifier.articleno | 784 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.