0 6

Cited 1 times in

Cited 0 times in

Redefining Trauma Triage for Elderly Adults: Development of Age-Specific Guidelines for Improved Patient Outcomes Based on a Machine-Learning Algorithm

DC Field Value Language
dc.contributor.authorLim, Ji Yeon-
dc.contributor.authorJee, Yongho-
dc.contributor.authorChoi, Seong Gyu-
dc.contributor.authorChoi, Yoon Hee-
dc.contributor.authorTorbati, Sam S.-
dc.contributor.authorBerdahl, Carl T.-
dc.contributor.authorLee, Sun Hwa-
dc.date.accessioned2025-11-10T07:37:36Z-
dc.date.available2025-11-10T07:37:36Z-
dc.date.created2025-08-21-
dc.date.issued2025-04-
dc.identifier.issn1010-660X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208562-
dc.description.abstractBackground and Objectives: Elderly trauma patients face unique physiological challenges that often lead to undertriage under the current guidelines. The present study aimed to develop machine-learning (ML)-based, age-specific triage guidelines to improve predictions for intensive care unit (ICU) admissions and in-hospital mortality. Materials and Methods: A total of 274,347 trauma cases transported via Emergency Medical System (EMS)-119 in Seoul (2020-2022) were analyzed. Physiological indicators (e.g., systolic blood pressure; saturation of partial pressure oxygen; and alert, verbal, pain, unresponsiveness scale) were incorporated. Bayesian optimization was used to fine-tuned models for sensitivity and specificity, emphasizing the F2 score to minimize undertriage. Results: Compared with the current guidelines, the alternative guidelines achieved superior sensitivity for ICU admissions (0.728 vs. 0.541) and in-hospital mortality (0.815 vs. 0.599). Subgroup analyses across injury severities, including traumatic brain and chest injuries, confirmed the enhanced performance of the alternative guidelines. Conclusions: ML-based, age-specific triage guidelines improve the sensitivity of triage decisions, reduce undertriage, and optimize elderly trauma care. Implementing these guidelines can significantly enhance patient outcomes and resource allocation in emergency settings.-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfMEDICINA-LITHUANIA-
dc.relation.isPartOfMEDICINA-LITHUANIA-
dc.subject.MESHAge Factors-
dc.subject.MESHAged-
dc.subject.MESHAged, 80 and over-
dc.subject.MESHAlgorithms-
dc.subject.MESHBayes Theorem-
dc.subject.MESHFemale-
dc.subject.MESHHospital Mortality-
dc.subject.MESHHumans-
dc.subject.MESHIntensive Care Units / statistics & numerical data-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPractice Guidelines as Topic-
dc.subject.MESHRepublic of Korea-
dc.subject.MESHTriage* / methods-
dc.subject.MESHTriage* / standards-
dc.subject.MESHWounds and Injuries* / mortality-
dc.titleRedefining Trauma Triage for Elderly Adults: Development of Age-Specific Guidelines for Improved Patient Outcomes Based on a Machine-Learning Algorithm-
dc.typeArticle-
dc.contributor.googleauthorLim, Ji Yeon-
dc.contributor.googleauthorJee, Yongho-
dc.contributor.googleauthorChoi, Seong Gyu-
dc.contributor.googleauthorChoi, Yoon Hee-
dc.contributor.googleauthorTorbati, Sam S.-
dc.contributor.googleauthorBerdahl, Carl T.-
dc.contributor.googleauthorLee, Sun Hwa-
dc.identifier.doi10.3390/medicina61050784-
dc.relation.journalcodeJ03886-
dc.identifier.eissn1648-9144-
dc.identifier.pmid40428742-
dc.identifier.urlhttps://www.mdpi.com/1648-9144/61/5/784-
dc.subject.keywordage-specific triage guideline-
dc.subject.keywordelderly trauma patients-
dc.subject.keywordmachine learning-
dc.contributor.affiliatedAuthorChoi, Seong Gyu-
dc.identifier.scopusid2-s2.0-105006718075-
dc.identifier.wosid001496233200001-
dc.citation.volume61-
dc.citation.number5-
dc.identifier.bibliographicCitationMEDICINA-LITHUANIA, Vol.61(5), 2025-04-
dc.identifier.rimsid88736-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorage-specific triage guideline-
dc.subject.keywordAuthorelderly trauma patients-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordPlusOLDER-ADULTS-
dc.subject.keywordPlusFIELD-TRIAGE-
dc.subject.keywordPlusCOMORBIDITIES-
dc.subject.keywordPlusSCORE-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
dc.identifier.articleno784-
Appears in Collections:
4. Graduate School of Public Health (보건대학원) > Graduate School of Public Health (보건대학원) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.