0 5

Cited 0 times in

Cited 0 times in

Artificial Intelligence-Driven Quantification of Tumor-Stroma Ratio and Fibroblasts Enables Precise Classification of Stroma Quality and Quantity in Predicting Colorectal Cancer Recurrence

DC Field Value Language
dc.contributor.authorKim, Jun Yong-
dc.contributor.authorJeong, Hoein-
dc.contributor.authorValero Puche, Aaron-
dc.contributor.authorSong, Sanghoon-
dc.contributor.authorCho, Soo Ick-
dc.contributor.authorJung, Minsun-
dc.date.accessioned2025-11-10T01:55:23Z-
dc.date.available2025-11-10T01:55:23Z-
dc.date.created2025-08-21-
dc.date.issued2025-04-
dc.identifier.issn1015-2008-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208543-
dc.description.abstractIntroduction: The tumor microenvironment plays a crucial role in the progression and prognosis of colorectal cancer (CRC). Among its components, the tumor-stroma ratio (TSR) and cancer-associated fibroblasts (CAFs) have emerged as significant prognostic markers. However, conventional assessments of TSR and CAF density remain subjective and labor-intensive, limiting their clinical applicability. Methods: We utilized an artificial intelligence (AI)-based whole slide image analysis platform, Lunit SCOPE IO, to objectively quantify TSR and CAF density in tissue samples from 207 treatment-na & iuml;ve patients with stage II and III CRC. Results: Our analysis demonstrated that both TSR (log-rank p < 0.0001) and CAF density (log-rank p = 0.017) were independently associated with disease-free survival (DFS). These AI-derived markers outperformed conventional prognostic factors. Furthermore, integrating TSR and CAF density with existing high-risk criteria enabled reclassification of additional patients as high risk, enhancing DFS prediction and reducing false-negative rates. Conclusion: AI-powered histopathological quantification of TSR and CAF density improves prognostic accuracy in CRC and offers a promising approach for refining risk stratification. These findings support the integration of AI-based pathology into clinical practice to enhance diagnostic precision and patient management.-
dc.languageEnglish-
dc.publisherS. Karger-
dc.relation.isPartOfPATHOBIOLOGY-
dc.relation.isPartOfPATHOBIOLOGY-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHAged, 80 and over-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHCancer-Associated Fibroblasts* / pathology-
dc.subject.MESHColorectal Neoplasms* / diagnosis-
dc.subject.MESHColorectal Neoplasms* / pathology-
dc.subject.MESHDisease-Free Survival-
dc.subject.MESHFemale-
dc.subject.MESHFibroblasts / pathology-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNeoplasm Recurrence, Local* / pathology-
dc.subject.MESHPrognosis-
dc.subject.MESHStromal Cells / pathology-
dc.subject.MESHTumor Microenvironment*-
dc.titleArtificial Intelligence-Driven Quantification of Tumor-Stroma Ratio and Fibroblasts Enables Precise Classification of Stroma Quality and Quantity in Predicting Colorectal Cancer Recurrence-
dc.typeArticle-
dc.contributor.googleauthorKim, Jun Yong-
dc.contributor.googleauthorJeong, Hoein-
dc.contributor.googleauthorValero Puche, Aaron-
dc.contributor.googleauthorSong, Sanghoon-
dc.contributor.googleauthorCho, Soo Ick-
dc.contributor.googleauthorJung, Minsun-
dc.identifier.doi10.1159/000546021-
dc.relation.journalcodeJ02470-
dc.identifier.eissn1423-0291-
dc.identifier.pmid40254013-
dc.identifier.urlhttps://karger.com/pat/article-abstract/92/5/276/925914/Artificial-Intelligence-Driven-Quantification-of-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordTumor-stroma ratio-
dc.subject.keywordFibroblast-
dc.subject.keywordColorectal cancer-
dc.subject.keywordPrognosis-
dc.contributor.affiliatedAuthorKim, Jun Yong-
dc.contributor.affiliatedAuthorJeong, Hoein-
dc.contributor.affiliatedAuthorJung, Minsun-
dc.identifier.scopusid2-s2.0-105008734932-
dc.identifier.wosid001507164200001-
dc.identifier.bibliographicCitationPATHOBIOLOGY, 2025-04-
dc.identifier.rimsid88744-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorTumor-stroma ratio-
dc.subject.keywordAuthorFibroblast-
dc.subject.keywordAuthorColorectal cancer-
dc.subject.keywordAuthorPrognosis-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalWebOfScienceCategoryPathology-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalResearchAreaPathology-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.