Cited 0 times in 
Cited 0 times in 
Artificial Intelligence-Driven Quantification of Tumor-Stroma Ratio and Fibroblasts Enables Precise Classification of Stroma Quality and Quantity in Predicting Colorectal Cancer Recurrence
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Jun Yong | - |
| dc.contributor.author | Jeong, Hoein | - |
| dc.contributor.author | Valero Puche, Aaron | - |
| dc.contributor.author | Song, Sanghoon | - |
| dc.contributor.author | Cho, Soo Ick | - |
| dc.contributor.author | Jung, Minsun | - |
| dc.date.accessioned | 2025-11-10T01:55:23Z | - |
| dc.date.available | 2025-11-10T01:55:23Z | - |
| dc.date.created | 2025-08-21 | - |
| dc.date.issued | 2025-04 | - |
| dc.identifier.issn | 1015-2008 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208543 | - |
| dc.description.abstract | Introduction: The tumor microenvironment plays a crucial role in the progression and prognosis of colorectal cancer (CRC). Among its components, the tumor-stroma ratio (TSR) and cancer-associated fibroblasts (CAFs) have emerged as significant prognostic markers. However, conventional assessments of TSR and CAF density remain subjective and labor-intensive, limiting their clinical applicability. Methods: We utilized an artificial intelligence (AI)-based whole slide image analysis platform, Lunit SCOPE IO, to objectively quantify TSR and CAF density in tissue samples from 207 treatment-na & iuml;ve patients with stage II and III CRC. Results: Our analysis demonstrated that both TSR (log-rank p < 0.0001) and CAF density (log-rank p = 0.017) were independently associated with disease-free survival (DFS). These AI-derived markers outperformed conventional prognostic factors. Furthermore, integrating TSR and CAF density with existing high-risk criteria enabled reclassification of additional patients as high risk, enhancing DFS prediction and reducing false-negative rates. Conclusion: AI-powered histopathological quantification of TSR and CAF density improves prognostic accuracy in CRC and offers a promising approach for refining risk stratification. These findings support the integration of AI-based pathology into clinical practice to enhance diagnostic precision and patient management. | - |
| dc.language | English | - |
| dc.publisher | S. Karger | - |
| dc.relation.isPartOf | PATHOBIOLOGY | - |
| dc.relation.isPartOf | PATHOBIOLOGY | - |
| dc.subject.MESH | Adult | - |
| dc.subject.MESH | Aged | - |
| dc.subject.MESH | Aged, 80 and over | - |
| dc.subject.MESH | Artificial Intelligence* | - |
| dc.subject.MESH | Cancer-Associated Fibroblasts* / pathology | - |
| dc.subject.MESH | Colorectal Neoplasms* / diagnosis | - |
| dc.subject.MESH | Colorectal Neoplasms* / pathology | - |
| dc.subject.MESH | Disease-Free Survival | - |
| dc.subject.MESH | Female | - |
| dc.subject.MESH | Fibroblasts / pathology | - |
| dc.subject.MESH | Humans | - |
| dc.subject.MESH | Male | - |
| dc.subject.MESH | Middle Aged | - |
| dc.subject.MESH | Neoplasm Recurrence, Local* / pathology | - |
| dc.subject.MESH | Prognosis | - |
| dc.subject.MESH | Stromal Cells / pathology | - |
| dc.subject.MESH | Tumor Microenvironment* | - |
| dc.title | Artificial Intelligence-Driven Quantification of Tumor-Stroma Ratio and Fibroblasts Enables Precise Classification of Stroma Quality and Quantity in Predicting Colorectal Cancer Recurrence | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Kim, Jun Yong | - |
| dc.contributor.googleauthor | Jeong, Hoein | - |
| dc.contributor.googleauthor | Valero Puche, Aaron | - |
| dc.contributor.googleauthor | Song, Sanghoon | - |
| dc.contributor.googleauthor | Cho, Soo Ick | - |
| dc.contributor.googleauthor | Jung, Minsun | - |
| dc.identifier.doi | 10.1159/000546021 | - |
| dc.relation.journalcode | J02470 | - |
| dc.identifier.eissn | 1423-0291 | - |
| dc.identifier.pmid | 40254013 | - |
| dc.identifier.url | https://karger.com/pat/article-abstract/92/5/276/925914/Artificial-Intelligence-Driven-Quantification-of | - |
| dc.subject.keyword | Artificial intelligence | - |
| dc.subject.keyword | Tumor-stroma ratio | - |
| dc.subject.keyword | Fibroblast | - |
| dc.subject.keyword | Colorectal cancer | - |
| dc.subject.keyword | Prognosis | - |
| dc.contributor.affiliatedAuthor | Kim, Jun Yong | - |
| dc.contributor.affiliatedAuthor | Jeong, Hoein | - |
| dc.contributor.affiliatedAuthor | Jung, Minsun | - |
| dc.identifier.scopusid | 2-s2.0-105008734932 | - |
| dc.identifier.wosid | 001507164200001 | - |
| dc.identifier.bibliographicCitation | PATHOBIOLOGY, 2025-04 | - |
| dc.identifier.rimsid | 88744 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Artificial intelligence | - |
| dc.subject.keywordAuthor | Tumor-stroma ratio | - |
| dc.subject.keywordAuthor | Fibroblast | - |
| dc.subject.keywordAuthor | Colorectal cancer | - |
| dc.subject.keywordAuthor | Prognosis | - |
| dc.type.docType | Article; Early Access | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Cell Biology | - |
| dc.relation.journalWebOfScienceCategory | Pathology | - |
| dc.relation.journalResearchArea | Cell Biology | - |
| dc.relation.journalResearchArea | Pathology | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.