0 42

Cited 9 times in

Cited 0 times in

Machine learning in biosignal analysis from wearable devices

DC Field Value Language
dc.contributor.authorJeong, Inhea-
dc.contributor.authorChung, Won Gi-
dc.contributor.authorKim, Enji-
dc.contributor.authorPark, Wonjung-
dc.contributor.authorSong, Hayoung-
dc.contributor.authorLee, Jakyoung-
dc.contributor.authorOh, Myoungjae-
dc.contributor.authorKim, Eunmin-
dc.contributor.authorPaek, Joonho-
dc.contributor.authorLee, Taekyeong-
dc.contributor.authorKim, Dayeon-
dc.contributor.authorAn, Seung Hyun-
dc.contributor.authorKim, Sumin-
dc.contributor.authorCho, Hyunjoo-
dc.contributor.authorPark, Jang-Ung-
dc.date.accessioned2025-11-05T07:46:22Z-
dc.date.available2025-11-05T07:46:22Z-
dc.date.created2025-08-26-
dc.date.issued2025-08-
dc.identifier.issn2051-6347-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208282-
dc.description.abstractThe advancement of wearable bioelectronics has significantly improved real-time biosignal monitoring, enabling continuous health tracking and providing personalized medical insights. However, the sheer volume and complexity of biosignal data collected over extended periods, along with noise, missing values, and environmental artifacts, present significant challenges for accurate analysis. Machine learning (ML) plays a crucial role in biosignal analysis by improving processing capabilities, enhancing monitoring accuracy, and uncovering hidden patterns and relationships within datasets. Effective ML-driven biosignal analysis requires careful model selection, considering data preprocessing needs, feature extraction strategies, computational efficiency, and accuracy trade-offs. This review explores key ML algorithms for biosignal processing, providing guidelines on selecting appropriate models based on data characteristics, processing goals, computational efficiency, and accuracy requirements. We discuss data preprocessing techniques, ML models (clustering, regression, classification), and evaluation methods for assessing the accuracy and reliability of ML-driven analyses. Furthermore, we introduce ML applications in health monitoring, disease diagnosis, and prediction across neurological, cardiovascular, biochemical, and other biosignals. Finally, we discuss the integration of ML with wearable bioelectronics and its revolutionary impact on future healthcare systems.-
dc.language영어-
dc.publisherROYAL SOC CHEMISTRY-
dc.relation.isPartOfMATERIALS HORIZONS-
dc.titleMachine learning in biosignal analysis from wearable devices-
dc.typeArticle-
dc.contributor.googleauthorJeong, Inhea-
dc.contributor.googleauthorChung, Won Gi-
dc.contributor.googleauthorKim, Enji-
dc.contributor.googleauthorPark, Wonjung-
dc.contributor.googleauthorSong, Hayoung-
dc.contributor.googleauthorLee, Jakyoung-
dc.contributor.googleauthorOh, Myoungjae-
dc.contributor.googleauthorKim, Eunmin-
dc.contributor.googleauthorPaek, Joonho-
dc.contributor.googleauthorLee, Taekyeong-
dc.contributor.googleauthorKim, Dayeon-
dc.contributor.googleauthorAn, Seung Hyun-
dc.contributor.googleauthorKim, Sumin-
dc.contributor.googleauthorCho, Hyunjoo-
dc.contributor.googleauthorPark, Jang-Ung-
dc.identifier.doi10.1039/d5mh00451a-
dc.identifier.pmid40437908-
dc.identifier.urlhttps://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00451a-
dc.contributor.affiliatedAuthorPark, Jang-Ung-
dc.identifier.scopusid2-s2.0-105006919371-
dc.identifier.wosid001498829400001-
dc.citation.volume12-
dc.citation.number17-
dc.citation.startPage6587-
dc.citation.endPage6621-
dc.identifier.bibliographicCitationMATERIALS HORIZONS, Vol.12(17) : 6587-6621, 2025-08-
dc.identifier.rimsid88988-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordPlusDISCRIMINANT-ANALYSIS-
dc.subject.keywordPlusLOGISTIC-REGRESSION-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusWIRELESS-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusIMPUTATION-
dc.subject.keywordPlusGLASSES-
dc.subject.keywordPlusPOINTS-
dc.type.docTypeReview; Early Access-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.