0 7

Cited 0 times in

Cited 0 times in

Enhancing Structured Pathology Report Generation With Foundation Model and Modular Design

DC Field Value Language
dc.contributor.authorKim, Kyung A.-
dc.contributor.authorHong, Sungman-
dc.contributor.authorYoo, Sehwan-
dc.contributor.authorKang, Yousun-
dc.contributor.authorShim, Hyo Sup-
dc.date.accessioned2025-11-05T02:04:06Z-
dc.date.available2025-11-05T02:04:06Z-
dc.date.created2025-09-11-
dc.date.issued2025-07-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208217-
dc.description.abstractPathology report generation, which requires analyzing giga-pixel Whole Slide Images (WSIs), is a complex and labor-intensive task. Despite this, it is crucial for clinical decision-making. An AI-driven report generation system can assist in producing accurate and concise reports. To address these needs, we designed a two-stage framework consisting of image analysis and text generation. This framework improves diagnostic performance and optimizes it for real-world clinical application. In the first stage, using 752 high resolution WSIs from bladder tumor tissue samples collected at Korea University Medical Center, we leveraged foundation models to extract robust features. Then, we built a multi-label classification based on key diagnostic elements to achieve high performance with an Attention-based Multi-Instance Learning (MIL) model and a Transformer-based MIL with Knowledge Distillation. For the report generation stage, we designed a T5-based text-to-text model, simplifying input representations while integrating data augmentation to improve stability and generalization. The proposed model achieved a ROUGE score of 0.87, a BLEU-4 score of 0.94, a Jaccard score of 0.89 and a BioLLM score of 0.97. An additional evaluation conducted by the institution maintaining the exclusive K-MEDICON test datasets confirmed a consistent performance yielding an overall score of 0.88, calculated as a weighted sum of aforementioned metrics. Its consistency validated through a Mean Opinion Score (MOS) evaluation by pathologists. By systematically integrating foundation models and modular structure, the benchmark results demonstrate that the task can be effectively solved with limited data and computational resources, indicating promising potential for real-world clinical adaptation.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.relation.isPartOfIEEE ACCESS-
dc.relation.isPartOfIEEE ACCESS-
dc.titleEnhancing Structured Pathology Report Generation With Foundation Model and Modular Design-
dc.typeArticle-
dc.contributor.googleauthorKim, Kyung A.-
dc.contributor.googleauthorHong, Sungman-
dc.contributor.googleauthorYoo, Sehwan-
dc.contributor.googleauthorKang, Yousun-
dc.contributor.googleauthorShim, Hyo Sup-
dc.identifier.doi10.1109/ACCESS.2025.3588121-
dc.relation.journalcodeJ03454-
dc.identifier.eissn2169-3536-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/11078283-
dc.subject.keywordPathology-
dc.subject.keywordFeature extraction-
dc.subject.keywordComputational modeling-
dc.subject.keywordAccuracy-
dc.subject.keywordTransformers-
dc.subject.keywordAnalytical models-
dc.subject.keywordBiological system modeling-
dc.subject.keywordFoundation models-
dc.subject.keywordComplexity theory-
dc.subject.keywordAttention mechanisms-
dc.subject.keywordKnowledge distillation-
dc.subject.keywordmultiple instance learning-
dc.subject.keywordreport generation-
dc.subject.keywordtext-to-text transfer transformer-
dc.subject.keywordwhole slide image-
dc.contributor.affiliatedAuthorKim, Kyung A.-
dc.contributor.affiliatedAuthorShim, Hyo Sup-
dc.identifier.scopusid2-s2.0-105012032433-
dc.identifier.wosid001531861100046-
dc.citation.volume13-
dc.citation.startPage121290-
dc.citation.endPage121299-
dc.identifier.bibliographicCitationIEEE ACCESS, Vol.13 : 121290-121299, 2025-07-
dc.identifier.rimsid89299-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorPathology-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorAccuracy-
dc.subject.keywordAuthorTransformers-
dc.subject.keywordAuthorAnalytical models-
dc.subject.keywordAuthorBiological system modeling-
dc.subject.keywordAuthorFoundation models-
dc.subject.keywordAuthorComplexity theory-
dc.subject.keywordAuthorAttention mechanisms-
dc.subject.keywordAuthorKnowledge distillation-
dc.subject.keywordAuthormultiple instance learning-
dc.subject.keywordAuthorreport generation-
dc.subject.keywordAuthortext-to-text transfer transformer-
dc.subject.keywordAuthorwhole slide image-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.