11 42

Cited 0 times in

Cited 0 times in

Deep learning-based method for grading histopathological liver fibrosis in rodent models of metabolic dysfunction-associated steatohepatitis

DC Field Value Language
dc.contributor.authorKo, Soo Min-
dc.contributor.authorShin, Jae-ik-
dc.contributor.authorHong, Yiyu-
dc.contributor.authorKim, Hyunji-
dc.contributor.authorSohn, Insuk-
dc.contributor.authorLee, Ji-Young-
dc.contributor.authorHan, Hyo-Jeong-
dc.contributor.authorJeong, Da Som-
dc.contributor.authorLee, Yerin-
dc.contributor.authorSon, Woo-Chan-
dc.date.accessioned2025-10-27T05:42:47Z-
dc.date.available2025-10-27T05:42:47Z-
dc.date.created2025-09-22-
dc.date.issued2025-07-
dc.identifier.issn2296-858X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208020-
dc.description.abstractIntroduction Metabolic dysfunction-associated steatohepatitis (MASH) is a significant liver disease that can lead to cirrhosis and liver cancer. Accurate assessment of liver fibrosis is crucial for diagnosis, prognosis, and informed treatment decision-making. Staging of liver fibrosis in MASH is based on Kleiner's score, which categorizes fibrosis based on its location within the liver as observed microscopically. This scoring system is part of a standard clinical research network and relies heavily on the expertise of pathologists.Methods This study utilized Sirius Red-stained whole slide images of liver tissue obtained from various MASH animal models to develop deep learning (DL) models for scoring liver fibrosis, with a focus on the criteria outlined in Kleiner's score. We created a trainable and testable dataset of whole-slide images of the liver, consisting of 999,711 patch images derived from 914 whole-slide images. The performance of the multi-class classification model was evaluated using the kappa statistic, area under the precision-recall curve (AUPRC), area under the receiver operating characteristic curve (AUROC), and Matthews correlation coefficient (MCC).Results To address challenges in clinical subclassification, a 5-class classification model was initially applied; the model achieved moderate agreement. A more refined 7-class model was subsequently developed, which outperformed the 5-class classification model. The enhanced subclassification significantly improved classification performance, as evidenced by the superior AUROC and AUPRC values of the 7-class model.Discussion This study highlights that DL models for scoring liver fibrosis can support expert pathologists in staging liver fibrosis in preclinical animal studies.-
dc.languageEnglish-
dc.publisherFrontiers Media S.A.-
dc.relation.isPartOfFRONTIERS IN MEDICINE-
dc.relation.isPartOfFRONTIERS IN MEDICINE-
dc.titleDeep learning-based method for grading histopathological liver fibrosis in rodent models of metabolic dysfunction-associated steatohepatitis-
dc.typeArticle-
dc.contributor.googleauthorKo, Soo Min-
dc.contributor.googleauthorShin, Jae-ik-
dc.contributor.googleauthorHong, Yiyu-
dc.contributor.googleauthorKim, Hyunji-
dc.contributor.googleauthorSohn, Insuk-
dc.contributor.googleauthorLee, Ji-Young-
dc.contributor.googleauthorHan, Hyo-Jeong-
dc.contributor.googleauthorJeong, Da Som-
dc.contributor.googleauthorLee, Yerin-
dc.contributor.googleauthorSon, Woo-Chan-
dc.identifier.doi10.3389/fmed.2025.1629036-
dc.relation.journalcodeJ03762-
dc.identifier.eissn2296-858X-
dc.identifier.pmid40687706-
dc.subject.keywordartificial intelligence-
dc.subject.keyworddeep learning-
dc.subject.keywordmetabolic dysfunction-associated steatohepatitis-
dc.subject.keywordliver fibrosis-
dc.subject.keywordhistopathology-
dc.contributor.affiliatedAuthorShin, Jae-ik-
dc.identifier.scopusid2-s2.0-105010895246-
dc.identifier.wosid001530706700001-
dc.citation.volume12-
dc.identifier.bibliographicCitationFRONTIERS IN MEDICINE, Vol.12, 2025-07-
dc.identifier.rimsid89585-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthormetabolic dysfunction-associated steatohepatitis-
dc.subject.keywordAuthorliver fibrosis-
dc.subject.keywordAuthorhistopathology-
dc.subject.keywordPlusCHRONIC HEPATITIS-C-
dc.subject.keywordPlusIMAGE-ANALYSIS-
dc.subject.keywordPlusNONALCOHOLIC STEATOHEPATITIS-
dc.subject.keywordPlusSEMIQUANTITATIVE INDEXES-
dc.subject.keywordPlusQUANTIFICATION-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusHISTOLOGY-
dc.subject.keywordPlusOUTCOMES-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusADULTS-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
dc.identifier.articleno1629036-
Appears in Collections:
7. Others (기타) > Others (기타) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.