0 0

Cited 0 times in

Cited 0 times in

Improving mortality prediction after radiotherapy with large language model structuring of large-scale unstructured electronic health records

DC Field Value Language
dc.contributor.authorPark, Sangjoon-
dc.contributor.authorWee, Chan Woo-
dc.contributor.authorChoi, Seo Hee-
dc.contributor.authorKim, Kyung Hwan-
dc.contributor.authorChang, Jee Suk-
dc.contributor.authorYoon, Hong In-
dc.contributor.authorLee, Ik Jae-
dc.contributor.authorKim, Yong Bae-
dc.contributor.authorCho, Jaeho-
dc.contributor.authorKeum, Ki Chang-
dc.contributor.authorLee, Chang Geol-
dc.contributor.authorByun, Hwa Kyung-
dc.contributor.authorKoom, Woong Sub-
dc.contributor.author김경환-
dc.date.accessioned2025-10-27T05:42:39Z-
dc.date.available2025-10-27T05:42:39Z-
dc.date.created2025-09-23-
dc.date.issued2025-10-
dc.identifier.issn0167-8140-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207996-
dc.description.abstractBackground and purpose: Avoiding unnecessary radiotherapy (RT) in patients with limited life expectancy requires accurate selection. Traditional survival models based on structured data often lack precision. Large language models (LLMs) offer a novel approach to structuring unstructured electronic health record (EHR) data, potentially improving survival predictions by integrating comprehensive clinical information. Materials and methods: We analyzed structured and unstructured data from 34,276 RT-treated patients at Yonsei Cancer Center. An open-source LLM structured unstructured EHR data using single-shot learning. External validation included 852 patients from Yongin Severance Hospital. We compared the LLM's performance against a domain-specific medical LLM and a smaller variant. Survival prediction models using statistical, machine-learning, and deep-learning approaches incorporated both structured and LLM-structured data. Results: The open-source LLM structured unstructured EHR data with 87.5 % accuracy, outperforming the domain-specific medical LLM (35.8 %). Larger LLMs were more effective in structuring clinically relevant features, such as general condition and disease extent, which correlated with survival. Incorporating LLM-structured features improved the deep learning model's C-index from 0.737 to 0.820 (internal validation) and from 0.779 to 0.842 (external validation). Risk stratification was also enhanced, with clearer differentiation among low-, intermediate-, and high-risk groups (p < 0.001). Additionally, models became more interpretable, as key LLM-structured features aligned with statistically significant predictors traditionally identified from structured data. Conclusion: General-domain LLMs, despite not being fine-tuned for medical data, can effectively structure large-scale unstructured EHRs, significantly improving survival prediction accuracy and model interpretability. The RT-Surv framework highlights the potential of LLMs to enhance clinical decision-making and optimize RT treatment.-
dc.languageEnglish-
dc.publisherElsevier Scientific Publishers-
dc.relation.isPartOfRADIOTHERAPY AND ONCOLOGY-
dc.relation.isPartOfRADIOTHERAPY AND ONCOLOGY-
dc.subject.MESHAged-
dc.subject.MESHDeep Learning-
dc.subject.MESHElectronic Health Records*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHLarge Language Models-
dc.subject.MESHMachine Learning-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNeoplasms* / mortality-
dc.subject.MESHNeoplasms* / radiotherapy-
dc.titleImproving mortality prediction after radiotherapy with large language model structuring of large-scale unstructured electronic health records-
dc.typeArticle-
dc.contributor.googleauthorPark, Sangjoon-
dc.contributor.googleauthorWee, Chan Woo-
dc.contributor.googleauthorChoi, Seo Hee-
dc.contributor.googleauthorKim, Kyung Hwan-
dc.contributor.googleauthorChang, Jee Suk-
dc.contributor.googleauthorYoon, Hong In-
dc.contributor.googleauthorLee, Ik Jae-
dc.contributor.googleauthorKim, Yong Bae-
dc.contributor.googleauthorCho, Jaeho-
dc.contributor.googleauthorKeum, Ki Chang-
dc.contributor.googleauthorLee, Chang Geol-
dc.contributor.googleauthorByun, Hwa Kyung-
dc.contributor.googleauthorKoom, Woong Sub-
dc.identifier.doi10.1016/j.radonc.2025.111052-
dc.relation.journalcodeJ02597-
dc.identifier.eissn1879-0887-
dc.identifier.pmid40692078-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0167814025045566-
dc.subject.keywordLarge language models-
dc.subject.keywordElectronic health records-
dc.subject.keywordData structurization-
dc.subject.keywordRadiotherapy-
dc.subject.keywordSurvival prediction-
dc.contributor.affiliatedAuthorPark, Sangjoon-
dc.contributor.affiliatedAuthorWee, Chan Woo-
dc.contributor.affiliatedAuthorChoi, Seo Hee-
dc.contributor.affiliatedAuthorKim, Kyung Hwan-
dc.contributor.affiliatedAuthorChang, Jee Suk-
dc.contributor.affiliatedAuthorYoon, Hong In-
dc.contributor.affiliatedAuthorLee, Ik Jae-
dc.contributor.affiliatedAuthorKim, Yong Bae-
dc.contributor.affiliatedAuthorCho, Jaeho-
dc.contributor.affiliatedAuthorKeum, Ki Chang-
dc.contributor.affiliatedAuthorLee, Chang Geol-
dc.contributor.affiliatedAuthorByun, Hwa Kyung-
dc.contributor.affiliatedAuthorKoom, Woong Sub-
dc.identifier.scopusid2-s2.0-105011378138-
dc.identifier.wosid001542096400001-
dc.citation.volume211-
dc.identifier.bibliographicCitationRADIOTHERAPY AND ONCOLOGY, Vol.211, 2025-10-
dc.identifier.rimsid89626-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorLarge language models-
dc.subject.keywordAuthorElectronic health records-
dc.subject.keywordAuthorData structurization-
dc.subject.keywordAuthorRadiotherapy-
dc.subject.keywordAuthorSurvival prediction-
dc.subject.keywordPlusRADIATION-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryOncology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaOncology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.identifier.articleno111052-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.