8 32

Cited 0 times in

Cited 0 times in

ColonOOD: A complete pipeline for optical diagnosis of colorectal polyps integrating out-of-distribution detection and uncertainty quantification

DC Field Value Language
dc.contributor.authorPark, Sehyun-
dc.contributor.authorLee, Dongheon-
dc.contributor.authorLee, Ji Young-
dc.contributor.authorChun, Jaeyoung-
dc.contributor.authorChang, Ji Young-
dc.contributor.authorBaek, Eunsu-
dc.contributor.authorJin, Eun Hyo-
dc.contributor.authorKim, Hyung-Sin-
dc.date.accessioned2025-10-27T05:42:37Z-
dc.date.available2025-10-27T05:42:37Z-
dc.date.created2025-09-23-
dc.date.issued2026-01-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207990-
dc.description.abstractThe rising prevalence of colorectal cancer necessitates early and accurate optical diagnosis of colorectal polyps. Despite advances in Computer-Aided Diagnosis (CAD) systems, challenges like data variability and inconsistent clinical performance hinder their widespread use. To address these limitations, we propose ColonOOD, an integrated CAD system for polyp localization, uncertainty-aware polyp classification, and Out-of-Distribution (OOD) polyp detection during colonoscopy. ColonOOD ensures robust classification of adenomatous, hyperplastic, and OOD polyps while providing calibrated uncertainty scores to support clinical decisions. Extensive evaluations across four medical centers and two public datasets demonstrate ColonOOD's strong performance, achieving up to 79.69% classification and 75.53 % OOD detection accuracy. This system offers reliable insights for endoscopists, marking a significant step toward broader clinical adoption of automated diagnostic tools in colorectal cancer care.-
dc.languageEnglish-
dc.publisherPergamon-
dc.relation.isPartOfEXPERT SYSTEMS WITH APPLICATIONS-
dc.relation.isPartOfEXPERT SYSTEMS WITH APPLICATIONS-
dc.titleColonOOD: A complete pipeline for optical diagnosis of colorectal polyps integrating out-of-distribution detection and uncertainty quantification-
dc.typeArticle-
dc.contributor.googleauthorPark, Sehyun-
dc.contributor.googleauthorLee, Dongheon-
dc.contributor.googleauthorLee, Ji Young-
dc.contributor.googleauthorChun, Jaeyoung-
dc.contributor.googleauthorChang, Ji Young-
dc.contributor.googleauthorBaek, Eunsu-
dc.contributor.googleauthorJin, Eun Hyo-
dc.contributor.googleauthorKim, Hyung-Sin-
dc.identifier.doi10.1016/j.eswa.2025.128756-
dc.relation.journalcodeJ00885-
dc.subject.keywordColonoscopy-
dc.subject.keywordComputer-aided diagnosis (CAD)-
dc.subject.keywordColorectal polyp classification-
dc.subject.keywordOut-of-distribution detection-
dc.subject.keywordUncertainty quantification-
dc.contributor.affiliatedAuthorChun, Jaeyoung-
dc.identifier.scopusid2-s2.0-105009704734-
dc.identifier.wosid001528799700001-
dc.citation.volume295-
dc.identifier.bibliographicCitationEXPERT SYSTEMS WITH APPLICATIONS, Vol.295, 2026-01-
dc.identifier.rimsid89616-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorColonoscopy-
dc.subject.keywordAuthorComputer-aided diagnosis (CAD)-
dc.subject.keywordAuthorColorectal polyp classification-
dc.subject.keywordAuthorOut-of-distribution detection-
dc.subject.keywordAuthorUncertainty quantification-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.identifier.articleno128756-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.