0 25

Cited 1 times in

Cited 0 times in

Development and validation of a risk prediction model for patients with hepatocellular carcinoma receiving atezolizumab-bevacizumab

DC Field Value Language
dc.contributor.authorNam, Heechul-
dc.contributor.authorKim, Dong Yun-
dc.contributor.authorKim, Do Young-
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorKim, Chang Wook-
dc.contributor.authorLee, Jaejun-
dc.contributor.authorYang, Keungmo-
dc.contributor.authorHan, Ji Won-
dc.contributor.authorSung, Pil Soo-
dc.contributor.authorYoon, Seung Kew-
dc.contributor.authorCho, Hee Sun-
dc.contributor.authorYang, Hyun-
dc.contributor.authorBae, Si Hyun-
dc.contributor.authorLee, Soon Kyu-
dc.contributor.authorKwon, Jung Hyun-
dc.contributor.authorNam, Soon Woo-
dc.contributor.authorLee, Ahlim-
dc.contributor.authorSong, Do Seon-
dc.contributor.authorChang, U. Im-
dc.contributor.authorKim, Seok-Hwan-
dc.contributor.authorSong, Myeong Jun-
dc.contributor.authorLee, Hae Lim-
dc.contributor.authorKim, Hee Yeon-
dc.contributor.authorLee, Sung Won-
dc.contributor.authorJang, Jeong Won-
dc.date.accessioned2025-10-24T06:01:58Z-
dc.date.available2025-10-24T06:01:58Z-
dc.date.created2025-10-14-
dc.date.issued2025-06-
dc.identifier.issn0270-9139-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207878-
dc.description.abstractBackground and Aims:Atezolizumab plus bevacizumab (AB) has become the standard first-line treatment for advanced HCC. However, identifying reliable prognostic biomarkers remains a critical challenge. We aimed to develop a comprehensive scoring system to predict overall survival (OS) in advanced HCC patients receiving first-line AB.Approach and Results:We included patients with advanced HCC receiving first-line AB from multiple centers in Korea, forming a derivation cohort (n=456) and a validation cohort (n=205). Multivariable analysis identified 5 independent prognostic factors: C-reactive protein >= 1.0 mg/dL (HR 2.07; p<0.001), albumin <3.5 g/dL (HR 1.60; p=0.002), protein induced by vitamin K absence or antagonist-II >= 1500 mAU/mL (HR 1.60; p=0.002), total bilirubin >= 1.0 mg/dL (HR 1.50; p=0.006), and macrovascular invasion (HR 1.49; p=0.009). We developed the CRAPT-M model, named after these factors&apos; initial letters. Patients were categorized into low (<= 4), intermediate (5-12), and high (>= 13) risk groups by CRAPT-M score. Median OS differed significantly: 22.4 (95% CI, 18.6-25.0), 12.9 (95% CI, 8.7-14.8), and 6.7 (95% CI, 5.1-7.7) months for low-risk, intermediate-risk, and high-risk groups, respectively (p<0.001). Time-dependent area under the receiver operating characteristic for CRAPT-M demonstrated consistently higher predictive accuracy than the CRAFITY model, with values of 0.785, 0.737, and 0.742 at 12, 24, and 36 months, respectively. The model demonstrated robust predictive performance in the external validation cohort, with excellent calibration and consistent discrimination across sensitivity analyses.Conclusions:The CRAPT-M model demonstrated robust OS prediction, offering a valuable tool for prognosis estimation and clinical decision-making in advanced HCC patients receiving AB.-
dc.languageEnglish-
dc.publisherWiley-
dc.relation.isPartOfHEPATOLOGY-
dc.relation.isPartOfHEPATOLOGY-
dc.titleDevelopment and validation of a risk prediction model for patients with hepatocellular carcinoma receiving atezolizumab-bevacizumab-
dc.typeArticle-
dc.contributor.googleauthorNam, Heechul-
dc.contributor.googleauthorKim, Dong Yun-
dc.contributor.googleauthorKim, Do Young-
dc.contributor.googleauthorKim, Ji Hoon-
dc.contributor.googleauthorKim, Chang Wook-
dc.contributor.googleauthorLee, Jaejun-
dc.contributor.googleauthorYang, Keungmo-
dc.contributor.googleauthorHan, Ji Won-
dc.contributor.googleauthorSung, Pil Soo-
dc.contributor.googleauthorYoon, Seung Kew-
dc.contributor.googleauthorCho, Hee Sun-
dc.contributor.googleauthorYang, Hyun-
dc.contributor.googleauthorBae, Si Hyun-
dc.contributor.googleauthorLee, Soon Kyu-
dc.contributor.googleauthorKwon, Jung Hyun-
dc.contributor.googleauthorNam, Soon Woo-
dc.contributor.googleauthorLee, Ahlim-
dc.contributor.googleauthorSong, Do Seon-
dc.contributor.googleauthorChang, U. Im-
dc.contributor.googleauthorKim, Seok-Hwan-
dc.contributor.googleauthorSong, Myeong Jun-
dc.contributor.googleauthorLee, Hae Lim-
dc.contributor.googleauthorKim, Hee Yeon-
dc.contributor.googleauthorLee, Sung Won-
dc.contributor.googleauthorJang, Jeong Won-
dc.identifier.doi10.1097/HEP.0000000000001444-
dc.relation.journalcodeJ00985-
dc.identifier.eissn1527-3350-
dc.identifier.pmid40587822-
dc.identifier.urlhttps://journals.lww.com/hep/fulltext/9900/development_and_validation_of_a_risk_prediction.1325-
dc.subject.keywordC-reactive protein-
dc.subject.keywordHCC-
dc.subject.keywordimmuno-oncology-
dc.subject.keywordrisk prediction model-
dc.contributor.affiliatedAuthorKim, Dong Yun-
dc.contributor.affiliatedAuthorKim, Do Young-
dc.identifier.scopusid2-s2.0-105010516701-
dc.identifier.wosid001554487600001-
dc.identifier.bibliographicCitationHEPATOLOGY, , 2025-06-
dc.identifier.rimsid89837-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorC-reactive protein-
dc.subject.keywordAuthorHCC-
dc.subject.keywordAuthorimmuno-oncology-
dc.subject.keywordAuthorrisk prediction model-
dc.subject.keywordPlusPLUS BEVACIZUMAB-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryGastroenterology & Hepatology-
dc.relation.journalResearchAreaGastroenterology & Hepatology-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.