8 38

Cited 0 times in

Cited 0 times in

Using Large Language Models to Simulate History Taking: Implications for Symptom-Based Medical Education

DC Field Value Language
dc.contributor.authorHuh, Cheong Yoon-
dc.contributor.authorLee, Jongwon-
dc.contributor.authorKim, Gibaeg-
dc.contributor.authorJang, Yerin-
dc.contributor.authorKo, Hye-seung-
dc.contributor.authorSuh, Min Jung-
dc.contributor.authorHwang, Sumin-
dc.contributor.authorSon, Ho Jin-
dc.contributor.authorSong, Junha-
dc.contributor.authorKim, Soo-Jeong-
dc.contributor.authorKim, Kwang Joon-
dc.contributor.authorKim, Sung Il-
dc.contributor.authorKim, Chang Oh-
dc.contributor.authorKo, Yeo Gyeong-
dc.date.accessioned2025-10-24T04:05:22Z-
dc.date.available2025-10-24T04:05:22Z-
dc.date.created2025-10-14-
dc.date.issued2025-07-
dc.identifier.issn2078-2489-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207852-
dc.description.abstractMedical education often emphasizes theoretical knowledge, limiting students' opportunities to practice history taking, a structured interview that elicits relevant patient information before clinical decision making. Large language models (LLMs) offer novel solutions by generating simulated patient interviews. This study evaluated the educational potential of LLM-generated history-taking dialogues, focusing on clinical validity and diagnostic diversity. Chest pain was chosen as a representative case given its frequent presentation and importance for differential diagnosis. A fine-tuned Gemma-3-27B, specialized for medical interviews, was compared with GPT-4o-mini, a freely accessible LLM, in generating multi-branching history-taking dialogues, with Claude-3.5 Sonnet inferring diagnoses from these dialogues. The dialogues were assessed using a Chest Pain Checklist (CPC) and entropy-based metrics. Gemma-3-27B outperformed GPT-4o-mini, generating significantly more high-quality dialogues (90.7% vs. 76.5%). Gemma-3-27B produced diverse and focused diagnoses, whereas GPT-4o-mini generated broader but less specific patterns. For demographic information, such as age and sex, Gemma-3-27B showed significant shifts in dialogue patterns and diagnoses aligned with real-world epidemiological trends. These findings suggest that LLMs, particularly those fine-tuned for medical tasks, are promising educational tools for generating diverse, clinically valid interview scenarios that enhance clinical reasoning in history taking.-
dc.language영어-
dc.publisherMDPI-
dc.relation.isPartOfINFORMATION-
dc.titleUsing Large Language Models to Simulate History Taking: Implications for Symptom-Based Medical Education-
dc.typeArticle-
dc.contributor.googleauthorHuh, Cheong Yoon-
dc.contributor.googleauthorLee, Jongwon-
dc.contributor.googleauthorKim, Gibaeg-
dc.contributor.googleauthorJang, Yerin-
dc.contributor.googleauthorKo, Hye-seung-
dc.contributor.googleauthorSuh, Min Jung-
dc.contributor.googleauthorHwang, Sumin-
dc.contributor.googleauthorSon, Ho Jin-
dc.contributor.googleauthorSong, Junha-
dc.contributor.googleauthorKim, Soo-Jeong-
dc.contributor.googleauthorKim, Kwang Joon-
dc.contributor.googleauthorKim, Sung Il-
dc.contributor.googleauthorKim, Chang Oh-
dc.contributor.googleauthorKo, Yeo Gyeong-
dc.identifier.doi10.3390/info16080653-
dc.subject.keywordlarge language models-
dc.subject.keywordhistory taking-
dc.subject.keywordmedical interview-
dc.subject.keywordmedical education-
dc.subject.keywordartificial intelligence in medicine-
dc.contributor.affiliatedAuthorKim, Soo-Jeong-
dc.contributor.affiliatedAuthorKim, Kwang Joon-
dc.contributor.affiliatedAuthorKim, Chang Oh-
dc.contributor.affiliatedAuthorKo, Yeo Gyeong-
dc.identifier.scopusid2-s2.0-105014319589-
dc.identifier.wosid001557691000001-
dc.citation.volume16-
dc.citation.number8-
dc.identifier.bibliographicCitationINFORMATION, v.16, no.8-
dc.identifier.rimsid89765-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorlarge language models-
dc.subject.keywordAuthorhistory taking-
dc.subject.keywordAuthormedical interview-
dc.subject.keywordAuthormedical education-
dc.subject.keywordAuthorartificial intelligence in medicine-
dc.subject.keywordPlusCHEST-PAIN-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusSKILLS-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalResearchAreaComputer Science-
dc.identifier.articleno653-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.