2 24

Cited 0 times in

Cited 0 times in

Scalable geometric learning with correlation-based functional brain networks

DC Field Value Language
dc.contributor.authorYou, Kisung-
dc.contributor.authorLee, Yelim-
dc.contributor.authorPark, Hae-Jeong-
dc.date.accessioned2025-10-24T01:45:16Z-
dc.date.available2025-10-24T01:45:16Z-
dc.date.created2025-10-14-
dc.date.issued2025-07-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207838-
dc.description.abstractCorrelation matrices serve as fundamental representations of functional brain networks in neuroimaging. Conventional analyses often treat pairwise interactions independently within Euclidean space, neglecting the underlying geometry of correlation structures. Although recent efforts have leveraged the quotient geometry of the correlation manifold, they suffer from computational inefficiency and numerical instability, especially in high-dimensional settings. We propose a novel geometric framework that uses diffeomorphic transformations to embed correlation matrices into a Euclidean space while preserving critical manifold characteristics. This approach enables scalable, geometry-aware analyses and integrates seamlessly with standard machine learning techniques, including regression, dimensionality reduction, and clustering. Moreover, it facilitates population-level inference of brain networks. Simulation studies demonstrate significant improvements in both computational speed and predictive accuracy over existing manifold-based methods. Applications to real neuroimaging data further highlight the framework's versatility, improving behavioral score prediction, subject fingerprinting in resting-state fMRI, and hypothesis testing in EEG analyses. To support community adoption and reproducibility, we provide an open-source MATLAB toolbox implementing the proposed techniques. Our work opens new directions for efficient and interpretable geometric modeling in large-scale functional brain network research.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.subject.MESHAlgorithms-
dc.subject.MESHBrain Mapping / methods-
dc.subject.MESHBrain* / diagnostic imaging-
dc.subject.MESHBrain* / physiology-
dc.subject.MESHComputer Simulation-
dc.subject.MESHElectroencephalography-
dc.subject.MESHHumans-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMagnetic Resonance Imaging / methods-
dc.subject.MESHNerve Net* / diagnostic imaging-
dc.subject.MESHNerve Net* / physiology-
dc.subject.MESHNeuroimaging / methods-
dc.titleScalable geometric learning with correlation-based functional brain networks-
dc.typeArticle-
dc.contributor.googleauthorYou, Kisung-
dc.contributor.googleauthorLee, Yelim-
dc.contributor.googleauthorPark, Hae-Jeong-
dc.identifier.doi10.1038/s41598-025-07703-1-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid40596580-
dc.contributor.affiliatedAuthorLee, Yelim-
dc.contributor.affiliatedAuthorPark, Hae-Jeong-
dc.identifier.scopusid2-s2.0-105009534962-
dc.identifier.wosid001522991400007-
dc.citation.volume15-
dc.citation.number1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.15(1), 2025-07-
dc.identifier.rimsid89802-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordPlusCOMPONENT ANALYSIS-
dc.subject.keywordPlusCONNECTIVITY-
dc.subject.keywordPlusSTATISTICS-
dc.subject.keywordPlusSHRINKAGE-
dc.subject.keywordPlusFULL-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno22685-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Nuclear Medicine (핵의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.