0 0

Cited 0 times in

Cited 0 times in

Effect of Deep Learning-Based Artificial Intelligence on Radiologists' Performance in Identifying Nigrosome 1 Abnormalities on Susceptibility Map-Weighted Imaging

DC Field Value Language
dc.contributor.authorPark, Jiyeon-
dc.contributor.authorLim, Chae Young-
dc.contributor.authorWon, So Yeon-
dc.contributor.authorNa, Han Kyu-
dc.contributor.authorLee, Phil Hyu-
dc.contributor.authorBaek, Sun-Young-
dc.contributor.authorRoh, Yun Hwa-
dc.contributor.authorSeong, Minjung-
dc.contributor.authorSim, Yongsik-
dc.contributor.authorKim, Eung Yeop-
dc.contributor.authorKim, Sung Tae-
dc.contributor.authorSohn, Beomseok-
dc.date.accessioned2025-10-23T08:16:20Z-
dc.date.available2025-10-23T08:16:20Z-
dc.date.created2025-10-14-
dc.date.issued2025-08-
dc.identifier.issn1229-6929-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207782-
dc.description.abstractObjective: To evaluate the effect of deep learning (DL)-based artificial intelligence (AI) software on the diagnostic performance of radiologists with different experience levels in detecting nigrosome 1 (N1) abnormalities on susceptibility map-weighted imaging (SMwI). Materials and Methods: This retrospective diagnostic case-control study analyzed 139 SMwI scans of 59 patients with Parkinson's disease (PD) and 80 healthy participants. Participants were imaged using 3T MRI, and AI-generated assessments for N1 abnormalities were obtained using an AI model (version 1.0.1.0; Heuron Corporation, Seoul, Korea), which utilized YOLOX-based object detection and SparseInst segmentation models. Four radiologists (two experienced neuroradiologists and two less experienced residents) evaluated N1 abnormalities with and without AI in a crossover study design. Diagnostic performance metrics, inter-reader agreements, and reader responses to AI-generated assessments were evaluated. Results: Use of AI significantly improved diagnostic performance compared with interpretation without it across three readers, with significant increases in specificity (0.86 vs. 0.94, P = 0.004; 0.91 vs. 0.97, P = 0.024; and 0.90 vs. 0.97, P = 0.012). Inter-reader agreement also improved with AI, as Fleiss's kappa increased from 0.73 (95% confidence interval [CI]: 0.61-0.84) to 0.87 (95% CI: 0.76-0.99). The net reclassification index (NRI) demonstrated significant improvement in three of the four readers. When grouped by experience level, less experienced readers showed greater improvement (NRI = 12.8%, 95% CI: 0.067-0.190) than experienced readers (NRI = 0.8%, 95% CI:-0.037-0.051). In the less experienced group, reader-AI disagreement was significantly higher in the PD group than in the normal group (8.1% vs. 3.8%, P = 0.029). Conclusion: DL-based AI enhances the diagnostic performance in detecting N1 abnormalities on SMwI, particularly benefiting less experienced radiologists. These findings underscore the potential for improving diagnostic workflows for PD.-
dc.languageEnglish-
dc.publisherKorean Society of Radiology-
dc.relation.isPartOfKOREAN JOURNAL OF RADIOLOGY-
dc.relation.isPartOfKOREAN JOURNAL OF RADIOLOGY-
dc.subject.MESHAged-
dc.subject.MESHAged, 80 and over-
dc.subject.MESHCase-Control Studies-
dc.subject.MESHClinical Competence-
dc.subject.MESHDeep Learning*-
dc.subject.MESHDetection Algorithms-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHImage Interpretation, Computer-Assisted / methods-
dc.subject.MESHMagnetic Resonance Imaging* / methods-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHObserver Variation-
dc.subject.MESHParkinson Disease* / diagnostic imaging-
dc.subject.MESHProspective Studies-
dc.subject.MESHRadiologists* / statistics & numerical data-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHSensitivity and Specificity-
dc.subject.MESHSoftware-
dc.subject.MESHSubstantia Nigra* / abnormalities-
dc.subject.MESHSubstantia Nigra* / diagnostic imaging-
dc.titleEffect of Deep Learning-Based Artificial Intelligence on Radiologists' Performance in Identifying Nigrosome 1 Abnormalities on Susceptibility Map-Weighted Imaging-
dc.typeArticle-
dc.contributor.googleauthorPark, Jiyeon-
dc.contributor.googleauthorLim, Chae Young-
dc.contributor.googleauthorWon, So Yeon-
dc.contributor.googleauthorNa, Han Kyu-
dc.contributor.googleauthorLee, Phil Hyu-
dc.contributor.googleauthorBaek, Sun-Young-
dc.contributor.googleauthorRoh, Yun Hwa-
dc.contributor.googleauthorSeong, Minjung-
dc.contributor.googleauthorSim, Yongsik-
dc.contributor.googleauthorKim, Eung Yeop-
dc.contributor.googleauthorKim, Sung Tae-
dc.contributor.googleauthorSohn, Beomseok-
dc.identifier.doi10.3348/kjr.2025.0208-
dc.relation.journalcodeJ02884-
dc.identifier.eissn2005-8330-
dc.identifier.pmid40736409-
dc.subject.keywordParkinson disease-
dc.subject.keywordMagnetic resonance imaging-
dc.subject.keywordSubstantia nigra-
dc.subject.keywordArtificial intelligence-
dc.contributor.affiliatedAuthorNa, Han Kyu-
dc.contributor.affiliatedAuthorLee, Phil Hyu-
dc.identifier.scopusid2-s2.0-105012570908-
dc.identifier.wosid001539567000003-
dc.citation.volume26-
dc.citation.number8-
dc.citation.startPage771-
dc.citation.endPage781-
dc.identifier.bibliographicCitationKOREAN JOURNAL OF RADIOLOGY, Vol.26(8) : 771-781, 2025-08-
dc.identifier.rimsid89758-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorParkinson disease-
dc.subject.keywordAuthorMagnetic resonance imaging-
dc.subject.keywordAuthorSubstantia nigra-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordPlusCLINICAL DIAGNOSTIC-CRITERIA-
dc.subject.keywordPlusSUBSTANTIA-NIGRA-
dc.subject.keywordPlusPARKINSONS-DISEASE-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusAGREEMENT-
dc.subject.keywordPlusUTILITY-
dc.type.docTypeArticle-
dc.identifier.kciidART003227582-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.