Cited 0 times in
Cited 0 times in
Effect of Deep Learning-Based Artificial Intelligence on Radiologists' Performance in Identifying Nigrosome 1 Abnormalities on Susceptibility Map-Weighted Imaging
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Jiyeon | - |
dc.contributor.author | Lim, Chae Young | - |
dc.contributor.author | Won, So Yeon | - |
dc.contributor.author | Na, Han Kyu | - |
dc.contributor.author | Lee, Phil Hyu | - |
dc.contributor.author | Baek, Sun-Young | - |
dc.contributor.author | Roh, Yun Hwa | - |
dc.contributor.author | Seong, Minjung | - |
dc.contributor.author | Sim, Yongsik | - |
dc.contributor.author | Kim, Eung Yeop | - |
dc.contributor.author | Kim, Sung Tae | - |
dc.contributor.author | Sohn, Beomseok | - |
dc.date.accessioned | 2025-10-23T08:16:20Z | - |
dc.date.available | 2025-10-23T08:16:20Z | - |
dc.date.created | 2025-10-14 | - |
dc.date.issued | 2025-08 | - |
dc.identifier.issn | 1229-6929 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207782 | - |
dc.description.abstract | Objective: To evaluate the effect of deep learning (DL)-based artificial intelligence (AI) software on the diagnostic performance of radiologists with different experience levels in detecting nigrosome 1 (N1) abnormalities on susceptibility map-weighted imaging (SMwI). Materials and Methods: This retrospective diagnostic case-control study analyzed 139 SMwI scans of 59 patients with Parkinson's disease (PD) and 80 healthy participants. Participants were imaged using 3T MRI, and AI-generated assessments for N1 abnormalities were obtained using an AI model (version 1.0.1.0; Heuron Corporation, Seoul, Korea), which utilized YOLOX-based object detection and SparseInst segmentation models. Four radiologists (two experienced neuroradiologists and two less experienced residents) evaluated N1 abnormalities with and without AI in a crossover study design. Diagnostic performance metrics, inter-reader agreements, and reader responses to AI-generated assessments were evaluated. Results: Use of AI significantly improved diagnostic performance compared with interpretation without it across three readers, with significant increases in specificity (0.86 vs. 0.94, P = 0.004; 0.91 vs. 0.97, P = 0.024; and 0.90 vs. 0.97, P = 0.012). Inter-reader agreement also improved with AI, as Fleiss's kappa increased from 0.73 (95% confidence interval [CI]: 0.61-0.84) to 0.87 (95% CI: 0.76-0.99). The net reclassification index (NRI) demonstrated significant improvement in three of the four readers. When grouped by experience level, less experienced readers showed greater improvement (NRI = 12.8%, 95% CI: 0.067-0.190) than experienced readers (NRI = 0.8%, 95% CI:-0.037-0.051). In the less experienced group, reader-AI disagreement was significantly higher in the PD group than in the normal group (8.1% vs. 3.8%, P = 0.029). Conclusion: DL-based AI enhances the diagnostic performance in detecting N1 abnormalities on SMwI, particularly benefiting less experienced radiologists. These findings underscore the potential for improving diagnostic workflows for PD. | - |
dc.language | English | - |
dc.publisher | Korean Society of Radiology | - |
dc.relation.isPartOf | KOREAN JOURNAL OF RADIOLOGY | - |
dc.relation.isPartOf | KOREAN JOURNAL OF RADIOLOGY | - |
dc.subject.MESH | Aged | - |
dc.subject.MESH | Aged, 80 and over | - |
dc.subject.MESH | Case-Control Studies | - |
dc.subject.MESH | Clinical Competence | - |
dc.subject.MESH | Deep Learning* | - |
dc.subject.MESH | Detection Algorithms | - |
dc.subject.MESH | Female | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Image Interpretation, Computer-Assisted / methods | - |
dc.subject.MESH | Magnetic Resonance Imaging* / methods | - |
dc.subject.MESH | Male | - |
dc.subject.MESH | Middle Aged | - |
dc.subject.MESH | Observer Variation | - |
dc.subject.MESH | Parkinson Disease* / diagnostic imaging | - |
dc.subject.MESH | Prospective Studies | - |
dc.subject.MESH | Radiologists* / statistics & numerical data | - |
dc.subject.MESH | Retrospective Studies | - |
dc.subject.MESH | Sensitivity and Specificity | - |
dc.subject.MESH | Software | - |
dc.subject.MESH | Substantia Nigra* / abnormalities | - |
dc.subject.MESH | Substantia Nigra* / diagnostic imaging | - |
dc.title | Effect of Deep Learning-Based Artificial Intelligence on Radiologists' Performance in Identifying Nigrosome 1 Abnormalities on Susceptibility Map-Weighted Imaging | - |
dc.type | Article | - |
dc.contributor.googleauthor | Park, Jiyeon | - |
dc.contributor.googleauthor | Lim, Chae Young | - |
dc.contributor.googleauthor | Won, So Yeon | - |
dc.contributor.googleauthor | Na, Han Kyu | - |
dc.contributor.googleauthor | Lee, Phil Hyu | - |
dc.contributor.googleauthor | Baek, Sun-Young | - |
dc.contributor.googleauthor | Roh, Yun Hwa | - |
dc.contributor.googleauthor | Seong, Minjung | - |
dc.contributor.googleauthor | Sim, Yongsik | - |
dc.contributor.googleauthor | Kim, Eung Yeop | - |
dc.contributor.googleauthor | Kim, Sung Tae | - |
dc.contributor.googleauthor | Sohn, Beomseok | - |
dc.identifier.doi | 10.3348/kjr.2025.0208 | - |
dc.relation.journalcode | J02884 | - |
dc.identifier.eissn | 2005-8330 | - |
dc.identifier.pmid | 40736409 | - |
dc.subject.keyword | Parkinson disease | - |
dc.subject.keyword | Magnetic resonance imaging | - |
dc.subject.keyword | Substantia nigra | - |
dc.subject.keyword | Artificial intelligence | - |
dc.contributor.affiliatedAuthor | Na, Han Kyu | - |
dc.contributor.affiliatedAuthor | Lee, Phil Hyu | - |
dc.identifier.scopusid | 2-s2.0-105012570908 | - |
dc.identifier.wosid | 001539567000003 | - |
dc.citation.volume | 26 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 771 | - |
dc.citation.endPage | 781 | - |
dc.identifier.bibliographicCitation | KOREAN JOURNAL OF RADIOLOGY, Vol.26(8) : 771-781, 2025-08 | - |
dc.identifier.rimsid | 89758 | - |
dc.type.rims | ART | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordAuthor | Parkinson disease | - |
dc.subject.keywordAuthor | Magnetic resonance imaging | - |
dc.subject.keywordAuthor | Substantia nigra | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordPlus | CLINICAL DIAGNOSTIC-CRITERIA | - |
dc.subject.keywordPlus | SUBSTANTIA-NIGRA | - |
dc.subject.keywordPlus | PARKINSONS-DISEASE | - |
dc.subject.keywordPlus | MRI | - |
dc.subject.keywordPlus | AGREEMENT | - |
dc.subject.keywordPlus | UTILITY | - |
dc.type.docType | Article | - |
dc.identifier.kciid | ART003227582 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.