0 0

Cited 0 times in

Cited 0 times in

Centiloid values from deep learning-based CT parcellation: a valid alternative to freesurfer

DC Field Value Language
dc.contributor.authorYoon, Yeo Jun-
dc.contributor.authorSeo, Seungbeom-
dc.contributor.authorLee, Sangwon-
dc.contributor.authorLim, Hyunkeong-
dc.contributor.authorChoo, Kyobin-
dc.contributor.authorKim, Daesung-
dc.contributor.authorHan, Hyunkyung-
dc.contributor.authorSo, Minjae-
dc.contributor.authorKang, Hosung-
dc.contributor.authorKang, Seongjin-
dc.contributor.authorKim, Dongwoo-
dc.contributor.authorLee, Young-gun-
dc.contributor.authorShin, Dongho-
dc.contributor.authorJeon, Tae Joo-
dc.contributor.authorYun, Mijin-
dc.date.accessioned2025-10-23T05:00:28Z-
dc.date.available2025-10-23T05:00:28Z-
dc.date.created2025-10-22-
dc.date.issued2025-09-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207756-
dc.description.abstractBackgroundAmyloid PET/CT is essential for quantifying amyloid-beta (A beta) deposition in Alzheimer's disease (AD), with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and evaluated its performance relative to standard pipelines.MethodsA total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB) PET/CT and MRI. Based on visual assessment, 207 patients were classified as A beta-positive and 76 as A beta-negative. PET images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines. Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare pipelines and determine the optimal CL threshold relative to visual A beta assessment.ResultsThe CT parcellation showed high concordance with the FS and provided reliable CL quantification (R-2 = 0.99). Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCI. ROC analyses confirmed comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.ConclusionsOur findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate spatial alignment, reducing registration errors and supporting more reliable and precise quantification.-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherBioMed Central Ltd.-
dc.relation.isPartOfALZHEIMERS RESEARCH & THERAPY-
dc.relation.isPartOfALZHEIMERS RESEARCH & THERAPY-
dc.titleCentiloid values from deep learning-based CT parcellation: a valid alternative to freesurfer-
dc.typeArticle-
dc.contributor.googleauthorYoon, Yeo Jun-
dc.contributor.googleauthorSeo, Seungbeom-
dc.contributor.googleauthorLee, Sangwon-
dc.contributor.googleauthorLim, Hyunkeong-
dc.contributor.googleauthorChoo, Kyobin-
dc.contributor.googleauthorKim, Daesung-
dc.contributor.googleauthorHan, Hyunkyung-
dc.contributor.googleauthorSo, Minjae-
dc.contributor.googleauthorKang, Hosung-
dc.contributor.googleauthorKang, Seongjin-
dc.contributor.googleauthorKim, Dongwoo-
dc.contributor.googleauthorLee, Young-gun-
dc.contributor.googleauthorShin, Dongho-
dc.contributor.googleauthorJeon, Tae Joo-
dc.contributor.googleauthorYun, Mijin-
dc.identifier.doi10.1186/s13195-025-01860-1-
dc.relation.journalcodeJ03592-
dc.identifier.eissn1758-9193-
dc.identifier.pmid41029783-
dc.subject.keywordAlzheimer&apos-
dc.subject.keywords disease-
dc.subject.keywordCentiloid-
dc.subject.keywordFlorbetaben-
dc.subject.keywordAmyloid imaging-
dc.contributor.affiliatedAuthorYoon, Yeo Jun-
dc.contributor.affiliatedAuthorSeo, Seungbeom-
dc.contributor.affiliatedAuthorLee, Sangwon-
dc.contributor.affiliatedAuthorLim, Hyunkeong-
dc.contributor.affiliatedAuthorSo, Minjae-
dc.contributor.affiliatedAuthorKang, Seongjin-
dc.contributor.affiliatedAuthorKim, Dongwoo-
dc.contributor.affiliatedAuthorJeon, Tae Joo-
dc.contributor.affiliatedAuthorYun, Mijin-
dc.identifier.scopusid2-s2.0-105017691732-
dc.identifier.wosid001586138600002-
dc.citation.volume17-
dc.citation.number1-
dc.citation.startPage212-
dc.identifier.bibliographicCitationALZHEIMERS RESEARCH & THERAPY, Vol.17(1) : 212, 2025-09-
dc.identifier.rimsid89884-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorAlzheimer&apos-
dc.subject.keywordAuthors disease-
dc.subject.keywordAuthorCentiloid-
dc.subject.keywordAuthorFlorbetaben-
dc.subject.keywordAuthorAmyloid imaging-
dc.subject.keywordPlusAMYLOID-BETA PLAQUES-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusPET-
dc.subject.keywordPlusRECOMMENDATIONS-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryClinical Neurology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.identifier.articleno212-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Otorhinolaryngology (이비인후과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Nuclear Medicine (핵의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.