0 1

Cited 0 times in

Cited 0 times in

End-to-end breast cancer radiotherapy planning via LMMs with consistency embedding

DC Field Value Language
dc.contributor.author김용배-
dc.contributor.author김진성-
dc.contributor.author박상준-
dc.contributor.author변화경-
dc.date.accessioned2025-10-15T01:34:32Z-
dc.date.available2025-10-15T01:34:32Z-
dc.date.issued2025-10-
dc.identifier.issn1361-8415-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207411-
dc.description.abstractClinical report; Large multimodal model; Radiation oncology; Radiotherapy target volume; Segmentation-
dc.description.statementOfResponsibilityhttps://www.sciencedirect.com/science/article/pii/S1361841525001938-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfMEDICAL IMAGE ANALYSIS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESH1-
dc.titleEnd-to-end breast cancer radiotherapy planning via LMMs with consistency embedding-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorKwanyoung Kim-
dc.contributor.googleauthorYujin Oh-
dc.contributor.googleauthorSangjoon Park-
dc.contributor.googleauthorHwa Kyung Byun-
dc.contributor.googleauthorJoongyo Lee-
dc.contributor.googleauthorJin Sung Kim-
dc.contributor.googleauthorYong Bae Kim-
dc.contributor.googleauthorJong Chul Ye-
dc.identifier.doiRecent advances in AI foundation models have significant potential for lightening the clinical workload by mimicking the comprehensive and multi-faceted approaches used by medical professionals. In the field of radiation oncology, the integration of multiple modalities holds great importance, so the opportunity of foundational model is abundant. Inspired by this, here we present RO-LMM, a multi-purpose, comprehensive large multimodal model (LMM) tailored for the field of radiation oncology. This model effectively manages a series of tasks within the clinical workflow, including clinical context summarization, radiotherapy strategy suggestion, and plan-guided target volume segmentation by leveraging the capabilities of LMM. In particular, to perform consecutive clinical tasks without error accumulation, we present a novel Consistency Embedding Fine-Tuning (CEFTune) technique, which boosts LMM's robustness to noisy inputs while preserving the consistency of handling clean inputs. We further extend this concept to LMM-driven segmentation framework, leading to a novel Consistency Embedding Segmentation (CESEG) techniques. Experimental results including multi-center validation confirm that our RO-LMM with CEFTune and CESEG results in promising performance for multiple clinical tasks with generalization capabilities.-
dc.contributor.localIdA00744-
dc.contributor.localIdA04548-
dc.contributor.localIdA06513-
dc.contributor.localIdA05136-
dc.relation.journalcodeJ02201-
dc.identifier.eissn1361-8423-
dc.identifier.pmid40516483-
dc.subject.keywordAlgorithms-
dc.subject.keywordBreast Neoplasms* / diagnostic imaging-
dc.subject.keywordBreast Neoplasms* / radiotherapy-
dc.subject.keywordFemale-
dc.subject.keywordHumans-
dc.subject.keywordRadiotherapy Planning, Computer-Assisted* / methods-
dc.contributor.alternativeNameKim, Yong Bae-
dc.contributor.affiliatedAuthor김용배-
dc.contributor.affiliatedAuthor김진성-
dc.contributor.affiliatedAuthor박상준-
dc.contributor.affiliatedAuthor변화경-
dc.citation.volume105-
dc.citation.startPage103646-
dc.identifier.bibliographicCitationMEDICAL IMAGE ANALYSIS, Vol.105 : 103646, 2025-10-
dc.identifier.articleno10.1016/j.media.2025.103646-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.