10 388

Cited 0 times in

Cited 0 times in

Artificially intelligent nasal perception for rapid sepsis diagnostics

DC Field Value Language
dc.contributor.author송재우-
dc.date.accessioned2025-08-18T05:44:57Z-
dc.date.available2025-08-18T05:44:57Z-
dc.date.issued2025-07-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207171-
dc.description.abstractSepsis, a life-threatening disease caused by infection, presents a major global health challenge due to its high morbidity and mortality rates. A rapid and precise diagnosis of sepsis is essential for better patient outcomes. However, conventional diagnostic methods, such as bacterial cultures, are time-consuming and can delay sepsis diagnosis. Considering these, researchers investigated alternative techniques that detect volatile organic compounds (VOCs) produced by bacteria. In this study, we designed colorimetric gas sensor arrays, which change color upon interaction with biomarkers, offer a direct visual signal, and demonstrate high sensitivity and specificity in detecting sepsis-related VOCs. Furthermore, an artificial intelligence (AI) based algorithm, Rapid Sepsis Boosting (RSBoost), was employed as an analytical technique to enhance diagnostic accuracy (96.2%) in blood sample. This approach significantly improves the speed and accuracy of sepsis diagnostics within 24 h, holding great potential for transforming clinical diagnostics, saving lives, and reducing healthcare costs. © 2025. The Author(s).-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfNPJ DIGITAL MEDICINE(Nature partner journals digital medicine Digital medicine)-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleArtificially intelligent nasal perception for rapid sepsis diagnostics-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Laboratory Medicine (진단검사의학교실)-
dc.contributor.googleauthorJoonchul Shin-
dc.contributor.googleauthorGwang Su Kim-
dc.contributor.googleauthorSeongmin Ha-
dc.contributor.googleauthorTaehee Yoon-
dc.contributor.googleauthorJunwoo Lee-
dc.contributor.googleauthorTaehoon Lee-
dc.contributor.googleauthorWoong Heo-
dc.contributor.googleauthorKyungyeon Lee-
dc.contributor.googleauthorSeong Jun Park-
dc.contributor.googleauthorSunyoung Park-
dc.contributor.googleauthorJaewoo Song-
dc.contributor.googleauthorSunghoon Hur-
dc.contributor.googleauthorHyun-Cheol Song-
dc.contributor.googleauthorJi-Soo Jang-
dc.contributor.googleauthorJin-Sang Kim-
dc.contributor.googleauthorHyo-Il Jung-
dc.contributor.googleauthorChong-Yun Kang-
dc.identifier.doi10.1038/s41746-025-01851-4-
dc.contributor.localIdA02054-
dc.relation.journalcodeJ03796-
dc.identifier.eissn2398-6352-
dc.identifier.pmid40707584-
dc.contributor.alternativeNameSong, Jae Woo-
dc.contributor.affiliatedAuthor송재우-
dc.citation.volume8-
dc.citation.number1-
dc.citation.startPage476-
dc.identifier.bibliographicCitationNPJ DIGITAL MEDICINE, Vol.8(1) : 476, 2025-07-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Laboratory Medicine (진단검사의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.